List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4745128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seasonal variations of anhydrosugars in PM _{2.5} in the Pearl River Delta Region, China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 22577.	1.6	55
2	An automated method for thermal-optical separation of aerosol organic/elemental carbon for 13C analysis at the sub-μgC level: A comprehensive assessment. Science of the Total Environment, 2022, 804, 150031.	8.0	5
3	Chemical characteristics and sources of organosulfates, organosulfonates, and carboxylic acids in aerosols in urban Xi'an, Northwest China. Science of the Total Environment, 2022, 810, 151187.	8.0	8
4	Organic aerosol formation and aging processes in Beijing constrained by size-resolved measurements of radiocarbon and stable isotopic 13C. Environment International, 2022, 158, 106890.	10.0	6
5	Concentration, optical characteristics, and emission factors of brown carbon emitted by on-road vehicles. Science of the Total Environment, 2022, 810, 151307.	8.0	9
6	13C signatures of aerosol organic and elemental carbon from major combustion sources in China compared to worldwide estimates. Science of the Total Environment, 2022, 810, 151284.	8.0	8
7	Polycyclic aromatic hydrocarbons from cooking emissions. Science of the Total Environment, 2022, 818, 151700.	8.0	20
8	Large contribution from worship activities to the atmospheric soot particles in northwest China. Environmental Pollution, 2022, 299, 118907.	7.5	2
9	Multiple-Year Changes (2014–2018) in Particulate Vanadium Linked to Shipping Regulations in the World's Largest Port Region. ACS Earth and Space Chemistry, 2022, 6, 415-420.	2.7	4
10	Chemical signature and fractionation of trace elements in fine particles from anthropogenic and natural sources. Journal of Environmental Sciences, 2022, 114, 365-375.	6.1	1
11	Decay Kinetics and Absorption Changes of Methoxyphenols and Nitrophenols during Nitrate-Mediated Aqueous Photochemical Oxidation at 254 and 313 nm. ACS Earth and Space Chemistry, 2022, 6, 1115-1125.	2.7	6
12	Sea spray as an obscured source for marine cloud nuclei. Nature Geoscience, 2022, 15, 282-286.	12.9	27
13	Evidence of a Large Bias in Rooftop Measurements of Atmospheric Ammonia. ACS Earth and Space Chemistry, 2022, 6, 160-164.	2.7	1
14	Chromophoric Fingerprinting of Brown Carbon from Residential Biomass Burning. Environmental Science and Technology Letters, 2022, 9, 102-111.	8.7	20
15	Nonagricultural Emissions Dominate Urban Atmospheric Amines as Revealed by Mobile Measurements. Geophysical Research Letters, 2022, 49, .	4.0	7
16	Effect of source variation on the size and mixing state of black carbon aerosol in urban Beijing from 2013 to 2019: Implication on light absorption. Environmental Pollution, 2021, 270, 116089.	7.5	17
17	Spectral absorption properties of organic carbon aerosol during a polluted winter in Beijing, China. Science of the Total Environment, 2021, 755, 142600.	8.0	13
18	Characteristics of wintertime VOCs in urban Beijing: Composition and source apportionment. Atmospheric Environment: X, 2021, 9, 100100.	1.4	9

#	Article	IF	CITATIONS
19	A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data. Atmospheric Measurement Techniques, 2021, 14, 923-943.	3.1	50
20	The formation and evolution of secondary organic aerosol during summer in Xi'an: Aqueous phase processing in fog-rain days. Science of the Total Environment, 2021, 756, 144077.	8.0	19
21	Measurement report: PM _{2.5} -bound nitrated aromatic compounds in Xi'an, Northwest China – seasonal variations and contributions to optical properties of brown carbon. Atmospheric Chemistry and Physics, 2021, 21, 3685-3697.	4.9	18
22	Brown Carbon in Primary and Aged Coal Combustion Emission. Environmental Science & Technology, 2021, 55, 5701-5710.	10.0	31
23	The maximum carbonyl ratio (MCR) as a new index for the structural classification of secondary organic aerosol components. Rapid Communications in Mass Spectrometry, 2021, 35, e9113.	1.5	13
24	Interactions of organosulfates with water vapor under sub- and supersaturated conditions. Atmospheric Chemistry and Physics, 2021, 21, 7135-7148.	4.9	16
25	Seasonal Trends of Aerosol Hygroscopicity and Mixing State in Clean Marine and Polluted Continental Air Masses Over the Northeast Atlantic. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033851.	3.3	5
26	Secondary Organic Aerosol Formation of Fleet Vehicle Emissions in China: Potential Seasonality of Spatial Distributions. Environmental Science & amp; Technology, 2021, 55, 7276-7286.	10.0	20
27	Black Carbon and Secondary Brown Carbon, the Dominant Light Absorption and Direct Radiative Forcing Contributors of the Atmospheric Aerosols Over the Tibetan Plateau. Geophysical Research Letters, 2021, 48, e2021GL092524.	4.0	12
28	The impact of aerosol size-dependent hygroscopicity and mixing state on the cloud condensation nuclei potential over the north-east Atlantic. Atmospheric Chemistry and Physics, 2021, 21, 8655-8675.	4.9	3
29	Urban organic aerosol composition in eastern China differs from north to south: molecular insight from a liquid chromatography–mass spectrometry (Orbitrap) study. Atmospheric Chemistry and Physics, 2021, 21, 9089-9104.	4.9	25
30	Characteristics and sources of hourly elements in PM10 and PM2.5 during wintertime in Beijing. Environmental Pollution, 2021, 278, 116865.	7.5	38
31	Quantification of solid fuel combustion and aqueous chemistry contributions to secondary organic aerosol during wintertime haze events in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 9859-9886.	4.9	20
32	Enhanced formation of secondary organic aerosol from photochemical oxidation during the COVID-19 lockdown in a background site in Northwest China. Science of the Total Environment, 2021, 778, 144947.	8.0	19
33	The roles of aqueous-phase chemistry and photochemical oxidation in oxygenated organic aerosols formation. Atmospheric Environment, 2021, 266, 118738.	4.1	14
34	Measurement report of the change of PM2.5 composition during the COVID-19 lockdown in urban Xi'an: Enhanced secondary formation and oxidation. Science of the Total Environment, 2021, 791, 148126.	8.0	14
35	Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi'an, Northwest China. Science of the Total Environment, 2021, 789, 147902.	8.0	10
36	Highly time-resolved measurements of element concentrations in PM ₁₀ and PM _{2.5} : comparison of Delhi, Beijing, London, and Krakow. Atmospheric Chemistry and Physics, 2021, 21, 717-730.	4.9	19

#	Article	IF	CITATIONS
37	Primary and Secondary Organic Nitrate in Northwest China: A Case Study. Environmental Science and Technology Letters, 2021, 8, 947-953.	8.7	9
38	Enhanced Nitrite Production from the Aqueous Photolysis of Nitrate in the Presence of Vanillic Acid and Implications for the Roles of Light-Absorbing Organics. Environmental Science & Technology, 2021, 55, 15694-15704.	10.0	25
39	Impact of the COVID-19 pandemic and control measures on air quality and aerosol light absorption in Southwestern China. Science of the Total Environment, 2020, 749, 141419.	8.0	40
40	One-year characterization of organic aerosol markers in urban Beijing: Seasonal variation and spatiotemporal comparison. Science of the Total Environment, 2020, 743, 140689.	8.0	9
41	<i>n</i> â€Alkanes and PAHs in the Southeastern Tibetan Plateau: Characteristics and Correlations With Brown Carbon Light Absorption. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032666.	3.3	10
42	Characterization of the light-absorbing properties, chromophore composition and sources of brown carbon aerosol in Xi'an, northwestern China. Atmospheric Chemistry and Physics, 2020, 20, 5129-5144.	4.9	54
43	Water-Insoluble Organics Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical Characteristics and Optical Properties. Environmental Science & Technology, 2020, 54, 7836-7847.	10.0	72
44	Chemical nature and sources of fine particles in urban Beijing: Seasonality and formation mechanisms. Environment International, 2020, 140, 105732.	10.0	26
45	Comprehensive Source Apportionment of Submicron Aerosol in Shijiazhuang, China: Secondary Aerosol Formation and Holiday Effects. ACS Earth and Space Chemistry, 2020, 4, 947-957.	2.7	9
46	Sea-spray regulates sulfate cloud droplet activation over oceans. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	32
47	Puzzling Haze Events in China During the Coronavirus (COVIDâ€19) Shutdown. Geophysical Research Letters, 2020, 47, e2020GL088533.	4.0	165
48	Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and continental air masses. Atmospheric Chemistry and Physics, 2020, 20, 3777-3791.	4.9	19
49	Light absorption of brown carbon in PM2.5 in the Three Gorges Reservoir region, southwestern China: Implications of biomass burning and secondary formation. Atmospheric Environment, 2020, 229, 117409.	4.1	18
50	Characteristics and potential exposure risks of environmentally persistent free radicals in PM2.5 in the three gorges reservoir area, Southwestern China. Chemosphere, 2020, 252, 126425.	8.2	24
51	Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer. Atmospheric Measurement Techniques, 2020, 13, 2457-2472.	3.1	33
52	Metallic elements and Pb isotopes in PM _{2.5} in three Chinese typical megacities: spatial distribution and source apportionment. Environmental Sciences: Processes and Impacts, 2020, 22, 1718-1730.	3.5	8
53	Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Science of the Total Environment, 2020, 742, 140556.	8.0	226
54	Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. Science of the Total Environment, 2020, 717, 137190.	8.0	26

#	Article	IF	CITATIONS
55	Brown carbon aerosol in two megacities in the Sichuan Basin of southwestern China: Light absorption properties and implications. Science of the Total Environment, 2020, 719, 137483.	8.0	48
56	Variation in black carbon concentration and aerosol optical properties in Beijing: Role of emission control and meteorological transport variability. Chemosphere, 2020, 254, 126849.	8.2	21
57	Summertime and wintertime atmospheric processes of secondary aerosol in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 3793-3807.	4.9	55
58	Seasonal variations in the sources of organic aerosol in Xi'an, Northwest China: The importance of biomass burning and secondary formation. Science of the Total Environment, 2020, 737, 139666.	8.0	16
59	Tropospheric aerosol hygroscopicity in China. Atmospheric Chemistry and Physics, 2020, 20, 13877-13903.	4.9	14
60	Measurement report: dual-carbon isotopic characterization of carbonaceous aerosol reveals different primary and secondary sources in Beijing and Xi'an during severe haze events. Atmospheric Chemistry and Physics, 2020, 20, 16041-16053.	4.9	17
61	Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing. Atmospheric Chemistry and Physics, 2020, 20, 9101-9114.	4.9	34
62	The impact of traffic on air quality in Ireland: insights from the simultaneous kerbside and suburban monitoring of submicron aerosols. Atmospheric Chemistry and Physics, 2020, 20, 10513-10529.	4.9	10
63	Atmospheric Processing of Loess Particles in a Polluted Urban Area of Northwestern China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7919-7929.	3.3	5
64	Exploring the impact of chemical composition on aerosol light extinction during winter in a heavily polluted urban area of China. Journal of Environmental Management, 2019, 247, 766-775.	7.8	13
65	Cellular Responses to Exposure to Outdoor Air from the Chinese Spring Festival at the Air–Liquid Interface. Environmental Science & Technology, 2019, 53, 9128-9138.	10.0	9
66	Characteristics of wintertime VOCs in suburban and urban Beijing: concentrations, emission ratios, and festival effects. Atmospheric Chemistry and Physics, 2019, 19, 8021-8036.	4.9	55
67	Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter. Atmospheric Chemistry and Physics, 2019, 19, 10319-10334.	4.9	42
68	A study of the morphology and effective density of externally mixed black carbon aerosols in ambient air using a size-resolved single-particle soot photometer (SP2). Atmospheric Measurement Techniques, 2019, 12, 4347-4359.	3.1	20
69	Determination of n-alkanes, polycyclic aromatic hydrocarbons and hopanes in atmospheric aerosol: evaluation and comparison of thermal desorption GC-MS and solvent extraction GC-MS approaches. Atmospheric Measurement Techniques, 2019, 12, 4779-4789.	3.1	15
70	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Technology, 2019, 53, 12506-12518.	10.0	45
71	High contributions of fossil sources to more volatile organic aerosol. Atmospheric Chemistry and Physics, 2019, 19, 10405-10422.	4.9	8
72	Differing toxicity of ambient particulate matter (PM) in global cities. Atmospheric Environment, 2019, 212, 305-315.	4.1	51

#	Article	IF	CITATIONS
73	Molecular Characterization and Source Identification of Atmospheric Particulate Organosulfates Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Technology, 2019, 53, 6192-6202.	10.0	34
74	Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8657-8666.	7.1	609
75	Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature. Atmospheric Chemistry and Physics, 2019, 19, 2247-2258.	4.9	35
76	Characterization of urban amine-containing particles in southwestern China: seasonal variation, source, and processing. Atmospheric Chemistry and Physics, 2019, 19, 3245-3255.	4.9	45
77	Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China. Atmospheric Chemistry and Physics, 2019, 19, 2283-2298.	4.9	74
78	Wintertime secondary organic aerosol formation in Beijing–Tianjin–Hebei (BTH): contributions of HONO sources and heterogeneous reactions. Atmospheric Chemistry and Physics, 2019, 19, 2343-2359.	4.9	83
79	Predominance of secondary organic aerosol to particle-bound reactive oxygen species activity in fine ambient aerosol. Atmospheric Chemistry and Physics, 2019, 19, 14703-14720.	4.9	31
80	Summertime Aerosol over the West of Ireland Dominated by Secondary Aerosol during Long-Range Transport. Atmosphere, 2019, 10, 59.	2.3	7
81	Sources and formation of carbonaceous aerosols in Xi'an, China: primary emissions and secondary formation constrained by radiocarbon. Atmospheric Chemistry and Physics, 2019, 19, 15609-15628.	4.9	15
82	Impacts of methanesulfonate on the cloud condensation nucleation activity of sea salt aerosol. Atmospheric Environment, 2019, 201, 13-17.	4.1	18
83	Characterization of the chemical components and bioreactivity of fine particulate matter produced during crop-residue burning in China. Environmental Pollution, 2019, 245, 226-234.	7.5	26
84	Mercury stable isotope compositions of Chinese urban fine particulates in winter haze days: Implications for Hg sources and transformations. Chemical Geology, 2019, 504, 267-275.	3.3	30
85	Synthesis and Applications of Nanomaterials With High Photocatalytic Activity on Air Purification. , 2019, , 299-325.		4
86	Chemical characteristics of airborne particles in Xi'an, inland China during dust storm episodes: Implications for heterogeneous formation of ammonium nitrate and enhancement of N-deposition. Environmental Pollution, 2019, 244, 877-884.	7.5	23
87	Technical Note: An Automated System for Separate Combustion of Elemental and Organic Carbon for 14C Analysis of Carbonaceous Aerosol. Aerosol and Air Quality Research, 2019, 19, 2604-2611.	2.1	3
88	Wintertime aerosol dominated by solid-fuel-burning emissions across Ireland: insight into the spatial and chemical variation in submicron aerosol. Atmospheric Chemistry and Physics, 2019, 19, 14091-14106.	4.9	14
89	Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Residential Coal Combustion. Environmental Science & Technology, 2018, 52, 2612-2617.	10.0	30
90	Light absorption properties of brown carbon over the southeastern Tibetan Plateau. Science of the Total Environment, 2018, 625, 246-251.	8.0	54

#	Article	IF	CITATIONS
91	Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China. Atmospheric Chemistry and Physics, 2018, 18, 4005-4017.	4.9	49
92	Biomass burning influences determination based on PM 2.5 chemical composition combined with fire counts at southeastern Tibetan Plateau during pre-monsoon period. Atmospheric Research, 2018, 206, 108-116.	4.1	14
93	Identification of secondary aerosol precursors emitted by an aircraft turbofan. Atmospheric Chemistry and Physics, 2018, 18, 7379-7391.	4.9	14
94	Source apportionment of carbonaceous aerosols in Xi'an, China: insights from a full year of measurements of radiocarbon and the stable isotope ¹³ C. Atmospheric Chemistry and Physics, 2018, 18, 16363-16383.	4.9	62
95	Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM _{2.5} from Xi'an, northwestern China. Atmospheric Measurement Techniques, 2018, 11, 3447-3456.	3.1	44
96	Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing. Environmental Science & Technology, 2018, 52, 10967-10974.	10.0	125
97	Extreme air pollution from residential solid fuel burning. Nature Sustainability, 2018, 1, 512-517.	23.7	59
98	Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties. Environmental Science & Technology, 2018, 52, 6825-6833.	10.0	149
99	Single particle characterization of summertime particles in Xi'an (China). Science of the Total Environment, 2018, 636, 1279-1290.	8.0	15
100	UHPLC-Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing). Atmospheric Environment, 2018, 189, 22-29.	4.1	62
101	Contributions of residential coal combustion to the air quality in Beijing–Tianjin–Hebei (BTH), China: a case study. Atmospheric Chemistry and Physics, 2018, 18, 10675-10691.	4.9	60
102	A study of elevated pollution layer over the North China Plain using aircraft measurements. Atmospheric Environment, 2018, 190, 188-194.	4.1	29
103	Global Survey of Antibiotic Resistance Genes in Air. Environmental Science & Technology, 2018, 52, 10975-10984.	10.0	227
104	Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations. Science of the Total Environment, 2017, 579, 212-220.	8.0	26
105	A 10-year observation of PM2.5-bound nickel in Xi'an, China: Effects of source control on its trend and associated health risks. Scientific Reports, 2017, 7, 41132.	3.3	26
106	Spectral dependence of aerosol light absorption at an urban and a remote site over the Tibetan Plateau. Science of the Total Environment, 2017, 590-591, 14-21.	8.0	60
107	Variation in Day-of-Week and Seasonal Concentrations of Atmospheric PM2.5-Bound Metals and Associated Health Risks in Bangkok, Thailand. Archives of Environmental Contamination and Toxicology, 2017, 72, 364-379.	4.1	35
108	Black carbon aerosol and its radiative impact at a highâ€altitude remote site on the southeastern Tibet Plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5515-5530.	3.3	36

#	Article	IF	CITATIONS
109	Effects of photochemical oxidation on the mixing state and light absorption of black carbon in the urban atmosphere of China. Environmental Research Letters, 2017, 12, 044012.	5.2	35
110	Long-term trend of O3 in a mega City (Shanghai), China: Characteristics, causes, and interactions with precursors. Science of the Total Environment, 2017, 603-604, 425-433.	8.0	152
111	Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry. Environmental Pollution, 2017, 228, 92-101.	7.5	35
112	Concentration and sources of atmospheric nitrous acid (HONO) at an urban site in Western China. Science of the Total Environment, 2017, 593-594, 165-172.	8.0	75
113	Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Aircraft Turbine Engines. Environmental Science & Technology, 2017, 51, 3621-3629.	10.0	6
114	Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China. Atmospheric Environment, 2017, 158, 128-137.	4.1	60
115	Characteristics of carbonaceous particles from residential coal combustion and agricultural biomass burning in China. Atmospheric Pollution Research, 2017, 8, 521-527.	3.8	58
116	Characterizing the composition and evolution of and urban particles in Chongqing (China) during summertime. Atmospheric Research, 2017, 187, 84-94.	4.1	22
117	Effect of hydrolysis of N2O5 on nitrate and ammonium formation in Beijing China: WRF-Chem model simulation. Science of the Total Environment, 2017, 579, 221-229.	8.0	44
118	Real-Time Characterization of Aerosol Particle Composition During Winter High-Pollution Events in China. , 2017, , 221-244.		0
119	Sources and Chemical Composition of Particulate Matter During Haze Pollution Events in China. , 2017, , 49-68.		2
120	Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter. Environmental Pollution, 2017, 231, 1330-1343.	7.5	41
121	Optical Properties of Aerosols and Implications for Radiative Effects in Beijing During the Asiaâ€Pacific Economic Cooperation Summit 2014. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,119.	3.3	13
122	PM2.5 emissions and source profiles from open burning of crop residues. Atmospheric Environment, 2017, 169, 229-237.	4.1	50
123	Characterization of Primary Organic Aerosol from Domestic Wood, Peat, and Coal Burning in Ireland. Environmental Science & Technology, 2017, 51, 10624-10632.	10.0	31
124	Severe Pollution in China Amplified by Atmospheric Moisture. Scientific Reports, 2017, 7, 15760.	3.3	151
125	Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Scientific Reports, 2017, 7, 4926.	3.3	133
126	Optical properties and possible sources of brown carbon in PM 2.5 over Xi'an, China. Atmospheric Environment, 2017, 150, 322-330.	4.1	96

#	Article	IF	CITATIONS
127	Particulate matters emitted from maize straw burning for winter heating in rural areas in Guanzhong Plain, China: Current emission and future reduction. Atmospheric Research, 2017, 184, 66-76.	4.1	109
128	Warming Effects on Ecosystem Carbon Fluxes Are Modulated by Plant Functional Types. Ecosystems, 2017, 20, 515-526.	3.4	54
129	Contributions of trans-boundary transport to summertime air quality in Beijing, China. Atmospheric Chemistry and Physics, 2017, 17, 2035-2051.	4.9	69
130	A possible pathway for rapid growth of sulfate during haze days in China. Atmospheric Chemistry and Physics, 2017, 17, 3301-3316.	4.9	193
131	Size distribution and source of black carbon aerosol in urban Beijing during winter haze episodes. Atmospheric Chemistry and Physics, 2017, 17, 7965-7975.	4.9	53
132	Impacts of meteorological uncertainties on the haze formation in Beijing–Tianjin–Hebei (BTH) during wintertime: a case study. Atmospheric Chemistry and Physics, 2017, 17, 14579-14591.	4.9	56
133	Black Carbon Aerosols at Mt. Muztagh Ata, a High-Altitude Location in the Western Tibetan Plateau. Aerosol and Air Quality Research, 2016, 16, 752-763.	2.1	13
134	Seasonal Variation, Sources and Transport of Aerosols at Lijiang, Southeast Tibetan Plateau. Aerosol and Air Quality Research, 2016, 16, 1579-1590.	2.1	10
135	Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry. Atmospheric Measurement Techniques, 2016, 9, 23-39.	3.1	110
136	Size distribution and mixing state of refractory black carbon aerosol from a coastal city in South China. Atmospheric Research, 2016, 181, 163-171.	4.1	31
137	Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities. Science of the Total Environment, 2016, 569-570, 619-626.	8.0	104
138	Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years. Scientific Reports, 2016, 6, 19151.	3.3	52
139	Effect of heavy haze and aerosol pollution on rice and wheat productions in China. Scientific Reports, 2016, 6, 29612.	3.3	103
140	Carbonaceous aerosols in megacity Xi'an, China: Implications of thermal/optical protocols comparison. Atmospheric Environment, 2016, 132, 58-68.	4.1	50
141	Contribution of regional transport to the black carbon aerosol during winter haze period in Beijing. Atmospheric Environment, 2016, 132, 11-18.	4.1	64
142	Azaarenes in fine particulate matter from the atmosphere of a Chinese megacity. Environmental Science and Pollution Research, 2016, 23, 16025-16036.	5.3	18
143	Quantifying sources of elemental carbon over the Guanzhong Basin of China: A consistent network of measurements and WRF-Chem modeling. Environmental Pollution, 2016, 214, 86-93.	7.5	13
144	Characterization, mixing state, and evolution of urban single particles in Xi'an (China) during wintertime haze days. Science of the Total Environment, 2016, 573, 937-945.	8.0	37

#	Article	IF	CITATIONS
145	Physicochemical characteristics of black carbon aerosol and its radiative impact in a polluted urban area of China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,505.	3.3	49
146	In situ Fabrication of α-Bi2O3/(BiO)2CO3 Nanoplate Heterojunctions with Tunable Optical Property and Photocatalytic Activity. Scientific Reports, 2016, 6, 23435.	3.3	65
147	Development of source profiles and their application in source apportionment of PM2.5 in Xiamen, China. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	6.0	13
148	Impact of crop field burning and mountains on heavy haze in the North China Plain: a case study. Atmospheric Chemistry and Physics, 2016, 16, 9675-9691.	4.9	69
149	Simulations of organic aerosol concentrations during springtime in the Guanzhong Basin, China. Atmospheric Chemistry and Physics, 2016, 16, 10045-10061.	4.9	48
150	New insights into PM _{2.5} chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 3207-3225.	4.9	300
151	Summertime ozone formation in Xi'an and surrounding areas, China. Atmospheric Chemistry and Physics, 2016, 16, 4323-4342.	4.9	64
152	Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin, China. Atmospheric Chemistry and Physics, 2016, 16, 7373-7387.	4.9	82
153	Characterization of parent and oxygenated-polycyclic aromatic hydrocarbons (PAHs) in Xi'an, China during heating period: An investigation of spatial distribution and transformation. Chemosphere, 2016, 159, 367-377.	8.2	49
154	The rural carbonaceous aerosols in coarse, fine, and ultrafine particles during haze pollution in northwestern China. Environmental Science and Pollution Research, 2016, 23, 4569-4575.	5.3	25
155	Retrieving historical ambient PM2.5 concentrations using existing visibility measurements in Xi'an, Northwest China. Atmospheric Environment, 2016, 126, 15-20.	4.1	30
156	Characterization of PM 2.5 in Guangzhou, China: uses of organic markers for supporting source apportionment. Science of the Total Environment, 2016, 550, 961-971.	8.0	89
157	Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: Characterization, mechanistic and photocatalytic NO removal studies. Applied Catalysis A: General, 2016, 515, 170-178.	4.3	59
158	Inter-annual variability of wintertime PM 2.5 chemical composition in Xi'an, China: Evidences of changing source emissions. Science of the Total Environment, 2016, 545-546, 546-555.	8.0	118
159	Chemical composition and bioreactivity of PM2.5 during 2013 haze events in China. Atmospheric Environment, 2016, 126, 162-170.	4.1	71
160	Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model. Science of the Total Environment, 2016, 541, 1614-1624.	8.0	22
161	Urban dust in the Guanzhong Basin of China, part I: A regional distribution of dust sources retrieved using satellite data. Science of the Total Environment, 2016, 541, 1603-1613.	8.0	22
162	PM2.5 from the Guanzhong Plain: Chemical composition and implications for emission reductions. Atmospheric Environment, 2016, 147, 458-469.	4.1	77

#	Article	IF	CITATIONS
163	Marine and urban influences on summertime PM2.5 aerosol in the Po basin using mobile measurements. Atmospheric Environment, 2015, 120, 447-454.	4.1	9
164	Chemical composition of PM2.5 at a high–altitude regional background site over Northeast of Tibet Plateau. Atmospheric Pollution Research, 2015, 6, 815-823.	3.8	25
165	Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM _{2.5} aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality. Atmospheric Chemistry and Physics, 2015, 15, 3111-3123.	4.9	67
166	Black carbon aerosol in winter northeastern Qinghai–Tibetan Plateau, China: the source, mixing state and optical property. Atmospheric Chemistry and Physics, 2015, 15, 13059-13069.	4.9	55
167	Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmospheric Chemistry and Physics, 2015, 15, 1299-1312.	4.9	163
168	Characteristics of Black Carbon Aerosol during the Chinese Lunar Year and Weekdays in Xi'an, China. Atmosphere, 2015, 6, 195-208.	2.3	12
169	Characteristics of Organic and Elemental Carbon in PM2.5 and PM0.25 in Indoor and Outdoor Environments of a Middle School: Secondary Formation of Organic Carbon and Sources Identification. Atmosphere, 2015, 6, 361-379.	2.3	24
170	Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi'an, central China. Science of the Total Environment, 2015, 505, 814-822.	8.0	150
171	Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China. Atmospheric Environment, 2015, 106, 252-261.	4.1	67
172	Spatiotemporal distribution of carbonyl compounds in China. Environmental Pollution, 2015, 197, 316-324.	7.5	42
173	Evaluation of Policy Influence on Long-Term Indoor Air Quality in Emperor Qin's Terra-Cotta Museum, China. Atmosphere, 2015, 6, 474-489.	2.3	2
174	Characteristics and major sources of carbonaceous aerosols in PM 2.5 from Sanya, China. Science of the Total Environment, 2015, 530-531, 110-119.	8.0	58
175	The optical properties of urban aerosol in northern China: A case study at Xi'an. Atmospheric Research, 2015, 160, 59-67.	4.1	22
176	Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi'an, China. Atmospheric Environment, 2015, 112, 64-71.	4.1	96
177	Observations of high level of ozone at Qinghai Lake basin in the northeastern Qinghai-Tibetan Plateau, western China. Journal of Atmospheric Chemistry, 2015, 72, 19-26.	3.2	12
178	Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmospheric Environment, 2015, 123, 399-406.	4.1	114
179	Spatial patterns, storages and sources of black carbon in soils from the catchment of <scp>Q</scp> inghai <scp>L</scp> ake, <scp>C</scp> hina. European Journal of Soil Science, 2015, 66, 525-534.	3.9	11
180	Indoor air quality at five site museums of Yangtze River civilization. Atmospheric Environment, 2015, 123, 449-454.	4.1	23

#	Article	IF	CITATIONS
181	Spatial and seasonal variations of PM 2.5 mass and species during 2010 in Xi'an, China. Science of the Total Environment, 2015, 508, 477-487.	8.0	149
182	Control of PM 2.5 in Guangzhou during the 16th Asian Games period: Implication for hazy weather prevention. Science of the Total Environment, 2015, 508, 57-66.	8.0	45
183	A Biomass Combustion Chamber: Design, Evaluation, and a Case Study of Wheat Straw Combustion Emission Tests. Aerosol and Air Quality Research, 2015, 15, 2104-2114.	2.1	68
184	Impact of Meteorological Parameters and Gaseous Pollutants on PM2.5 and PM10 Mass Concentrations during 2010 in Xi'an, China. Aerosol and Air Quality Research, 2015, 15, 1844-1854.	2.1	47
185	Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatography–mass spectrometry and ion chromatography approaches. Atmospheric Measurement Techniques, 2014, 7, 2027-2035.	3.1	36
186	PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Science of the Total Environment, 2014, 473-474, 77-87.	8.0	272
187	Terpenoid composition and chemotaxonomic aspects of Miocene amber from the Koroglu Mountains, Turkey. Journal of Analytical and Applied Pyrolysis, 2014, 105, 100-107.	5.5	21
188	Black carbon aerosol characterization in a remote area of Qinghai–Tibetan Plateau, western China. Science of the Total Environment, 2014, 479-480, 151-158.	8.0	58
189	Seasonal variations of monocarbonyl and dicarbonyl in urban and sub-urban sites of Xi'an, China. Environmental Monitoring and Assessment, 2014, 186, 2835-2849.	2.7	30
190	Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi'an, China. Journal of the Air and Waste Management Association, 2014, 64, 1317-1327.	1.9	55
191	Two-stroke scooters are a dominant source of air pollution in many cities. Nature Communications, 2014, 5, 3749.	12.8	126
192	Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications for Light Absorption Enhancement. Aerosol Science and Technology, 2014, 48, 689-697.	3.1	122
193	Long-term trends in visibility and impacts of aerosol composition on visibility impairment in Baoji, China. Atmospheric Research, 2014, 149, 88-95.	4.1	68
194	Radiocarbon-Based Source Apportionment of Carbonaceous Aerosols at a Regional Background Site on Hainan Island, South China. Environmental Science & Technology, 2014, 48, 2651-2659.	10.0	87
195	High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514, 218-222.	27.8	3,582
196	Emission of iodine-containing volatiles by selected microalgae species. Atmospheric Chemistry and Physics, 2014, 14, 13327-13335.	4.9	8
197	Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012 – Part 1: Source apportionment and spatial variability. Atmospheric Chemistry and Physics, 2014, 14, 13551-13570.	4.9	89
198	The seaweeds <i>Fucus vesiculosus</i> and <i>Ascophyllum nodosum</i> are significant contributors to coastal iodine emissions. Atmospheric Chemistry and Physics, 2013, 13, 5255-5264.	4.9	18

#	Article	IF	CITATIONS
199	lodine emissions from the sea ice of the Weddell Sea. Atmospheric Chemistry and Physics, 2012, 12, 11229-11244.	4.9	83
200	Application of Time-of-Flight Aerosol Mass Spectrometry for the Online Measurement of Gaseous Molecular Iodine. Analytical Chemistry, 2012, 84, 1439-1445.	6.5	14
201	Application of mass spectrometric techniques for the trace analysis of short-lived iodine-containing volatiles emitted by seaweed. Analytical and Bioanalytical Chemistry, 2012, 402, 3345-3357.	3.7	21
202	Atmospheric Analytical Chemistry. Analytical Chemistry, 2011, 83, 4649-4664.	6.5	62
203	Does iodine gas released from seaweed contribute to dietary iodine intake?. Environmental Geochemistry and Health, 2011, 33, 389-397.	3.4	23
204	In situ measurements of molecular iodine in the marine boundary layer: the link to macroalgae and the implications for O ₃ , IO, OIO and NO _x . Atmospheric Chemistry and Physics, 2010, 10, 4823-4833.	4.9	53
205	Diffusion technique for the generation of gaseous halogen standards. Journal of Chromatography A, 2010, 1217, 2065-2069.	3.7	10
206	Observations of high concentrations of I ₂ and IO in coastal air supporting iodineâ€oxide driven coastal new particle formation. Geophysical Research Letters, 2010, 37, .	4.0	29
207	Extensive Evaluation of a Diffusion Denuder Technique for the Quantification of Atmospheric Stable and Radioactive Molecular Iodine. Environmental Science & Technology, 2010, 44, 5061-5066.	10.0	16
208	Development of a Coupled Diffusion Denuder System Combined with Gas Chromatography/Mass Spectrometry for the Separation and Quantification of Molecular Iodine and the Activated Iodine Compounds Iodine Monochloride and Hypoiodous Acid in the Marine Atmosphere. Analytical Chemistry, 2009, 81, 1777-1783.	6.5	46
209	A denuder–impinger system with in situ derivatization followed by gas chromatography–mass spectrometry for the determination of gaseous iodine-containing halogen species. Journal of Chromatography A, 2008, 1210, 135-141.	3.7	12
210	Direct analysis of mercury in Traditional Chinese Medicines using thermolysis coupled with on-line atomic absorption spectrometry. Talanta, 2006, 68, 728-734.	5.5	38
211	An analytical study of bioaccumulation and the binding forms of mercury in rat body using thermolysis coupled with atomic absorption spectrometry. Analytica Chimica Acta, 2005, 538, 313-321.	5.4	14