List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4744717/publications.pdf Version: 2024-02-01

МІСНЛЕГ Н СНО

#	Article	IF	CITATIONS
1	Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature, 2021, 590, 290-299.	13.7	1,069
2	Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma. New England Journal of Medicine, 2016, 374, 1842-1852.	13.9	456
3	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	3.4	376
4	Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature, 2020, 586, 763-768.	13.7	376
5	New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature Genetics, 2019, 51, 481-493.	9.4	350
6	Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nature Genetics, 2010, 42, 200-202.	9.4	348
7	Association Between Interstitial Lung Abnormalities and All-Cause Mortality. JAMA - Journal of the American Medical Association, 2016, 315, 672.	3.8	333
8	<i>MMP12,</i> Lung Function, and COPD in High-Risk Populations. New England Journal of Medicine, 2009, 361, 2599-2608.	13.9	315
9	Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nature Genetics, 2017, 49, 426-432.	9.4	306
10	Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respiratory Medicine,the, 2014, 2, 214-225.	5.2	291
11	Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nature Genetics, 2017, 49, 416-425.	9.4	257
12	Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nature Genetics, 2019, 51, 494-505.	9.4	257
13	The clinical and genetic features of COPD-asthma overlap syndrome. European Respiratory Journal, 2014, 44, 341-350.	3.1	249
14	A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Human Molecular Genetics, 2012, 21, 947-957.	1.4	216
15	Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 564-574.	2.5	208
16	Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genetics, 2019, 15, e1008500.	1.5	203
17	Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene. Respiratory Research, 2014, 15, 89.	1.4	196
18	Genome-Wide Association Studies Identify <i>CHRNA5/3</i> and <i>HTR4</i> in the Development of Airflow Obstruction. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 622-632.	2.5	164

#	Article	IF	CITATIONS
19	Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nature Genetics, 2020, 52, 969-983.	9.4	146
20	Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Human Molecular Genetics, 2012, 21, 1325-1335.	1.4	143
21	Imaging Patterns Are Associated with Interstitial Lung Abnormality Progression and Mortality. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 175-183.	2.5	142
22	Systemic Soluble Receptor for Advanced Glycation Endproducts Is a Biomarker of Emphysema and Associated with AGER Genetic Variants in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 948-957.	2.5	138
23	PRIMUS: Rapid Reconstruction of Pedigrees from Genome-wide Estimates of Identity by Descent. American Journal of Human Genetics, 2014, 95, 553-564.	2.6	129
24	Cluster analysis in the COPDGene study identifies subtypes of smokers with distinct patterns of airway disease and emphysema. Thorax, 2014, 69, 416-423.	2.7	128
25	A Genome-Wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 559-569.	2.5	128
26	Heritability of Chronic Obstructive Pulmonary Disease and Related Phenotypes in Smokers. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 941-947.	2.5	121
27	A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. BMC Genetics, 2015, 16, 138.	2.7	119
28	The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Human Molecular Genetics, 2010, 19, 526-534.	1.4	118
29	Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1238-1247.	2.5	117
30	COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2019, 6, 384-399.	0.5	112
31	Association of clonal hematopoiesis with chronic obstructive pulmonary disease. Blood, 2022, 139, 357-368.	0.6	106
32	Genome-wide Association Study Identifies <i>BICD1</i> as a Susceptibility Gene for Emphysema. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 43-49.	2.5	103
33	Efficient Variant Set Mixed Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing Studies. American Journal of Human Genetics, 2019, 104, 260-274.	2.6	103
34	A Chronic Obstructive Pulmonary Disease Susceptibility Gene, <i>FAM13A</i> , Regulates Protein Stability of β-Catenin. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 185-197.	2.5	101
35	Smoking duration alone provides stronger risk estimates of chronic obstructive pulmonary disease than pack-years. Thorax, 2018, 73, 414-421.	2.7	96
36	Genome-wide association study of smoking behaviours in patients with COPD. Thorax, 2011, 66, 894-902.	2.7	95

#	Article	IF	CITATIONS
37	Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 199-208.	2.5	90
38	Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD. PLoS Genetics, 2016, 12, e1006011.	1.5	88
39	The Association of Genome-Wide Significant Spirometric Loci with Chronic Obstructive Pulmonary Disease Susceptibility. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 1147-1153.	1.4	87
40	Genome-Wide Study of Percent Emphysema on Computed Tomography in the General Population. The Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 408-418.	2.5	87
41	Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function. Nature Communications, 2018, 9, 2976.	5.8	85
42	The value of blood cytokines and chemokines in assessing COPD. Respiratory Research, 2017, 18, 180.	1.4	83
43	Genome-Wide Association Identifies Regulatory Loci Associated with Distinct Local Histogram Emphysema Patterns. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 399-409.	2.5	77
44	Overlap of Genetic Risk between Interstitial Lung Abnormalities and Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1402-1413.	2.5	77
45	A linear prognostic score based on the ratio of interleukin-6 to interleukin-10 predicts outcomes in COVID-19. EBioMedicine, 2020, 61, 103026.	2.7	77
46	Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Scientific Reports, 2017, 7, 44232.	1.6	76
47	VTE in ICU Patients With COVID-19. Chest, 2020, 158, 2130-2135.	0.4	76
48	<i>CHRNA3</i> / <i>5</i> , <i>IREB2</i> , and <i>ADCY2</i> Are Associated with Severe Chronic Obstructive Pulmonary Disease in Poland. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 203-208.	1.4	75
49	DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics, 2016, 11, 730-739.	1.3	73
50	Genetic overlap of chronic obstructive pulmonary disease and cardiovascular disease-related traits: a large-scale genome-wide cross-trait analysis. Respiratory Research, 2019, 20, 64.	1.4	73
51	Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation. Respiratory Research, 2010, 11, 30.	1.4	72
52	Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Human Genetics, 2013, 132, 431-441.	1.8	69
53	Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts. Lancet Respiratory Medicine,the, 2020, 8, 696-708.	5.2	69
54	A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nature Genetics, 2021, 53, 1504-1516.	9.4	69

#	Article	IF	CITATIONS
55	Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 677-690.	2.5	66
56	Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax, 2017, 72, 998-1006.	2.7	65
57	Machine Learning and Prediction of All-Cause Mortality in COPD. Chest, 2020, 158, 952-964.	0.4	62
58	Alpha-1 Antitrypsin PiMZ Genotype Is Associated with Chronic Obstructive Pulmonary Disease in Two Racial Groups. Annals of the American Thoracic Society, 2017, 14, 1280-1287.	1.5	60
59	Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease. PLoS ONE, 2011, 6, e24395.	1.1	59
60	Human Lung DNA Methylation Quantitative Trait Loci Colocalize with Chronic Obstructive Pulmonary Disease Genome-Wide Association Loci. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1275-1284.	2.5	56
61	Non-emphysematous chronic obstructive pulmonary disease is associated with diabetes mellitus. BMC Pulmonary Medicine, 2014, 14, 164.	0.8	55
62	Sex-specific features of emphysema among current and former smokers with COPD. European Respiratory Journal, 2016, 47, 104-112.	3.1	55
63	Genetic Association and Risk Scores in a Chronic Obstructive Pulmonary Disease Meta-analysis of 16,707 Subjects. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 35-46.	1.4	55
64	The <i>MUC5B</i> promoter polymorphism is associated with specific interstitial lung abnormality subtypes. European Respiratory Journal, 2017, 50, 1700537.	3.1	55
65	Exome Array Analysis Identifies a Common Variant in <i>IL27</i> Associated with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 48-57.	2.5	52
66	Genetic susceptibility for chronic bronchitis in chronic obstructive pulmonary disease. Respiratory Research, 2014, 15, 113.	1.4	51
67	COPD subtypes identified by network-based clustering of blood gene expression. Genomics, 2016, 107, 51-58.	1.3	49
68	Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells. Genomics, 2013, 101, 263-272.	1.3	46
69	Exome Sequencing Analysis in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1353-1363.	2.5	46
70	Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. JCI Insight, 2018, 3, .	2.3	46
71	Surfactant protein D is a causal risk factor for COPD: results of Mendelian randomisation. European Respiratory Journal, 2017, 50, 1700657.	3.1	45
72	Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 757-771.	2.5	45

#	Article	IF	CITATIONS
73	Machine Learning Characterization of COPD Subtypes. Chest, 2020, 157, 1147-1157.	0.4	44
74	Opportunities and Challenges in the Genetics of COPD 2010: An International COPD Genetics Conference Report. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2011, 8, 121-135.	0.7	43
75	Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Human Molecular Genetics, 2015, 24, 1200-1210.	1.4	43
76	Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respiratory Medicine,the, 2022, 10, 485-496.	5.2	42
77	A Genome-Wide Association Study of Chronic Obstructive Pulmonary Disease in Hispanics. Annals of the American Thoracic Society, 2015, 12, 340-348.	1.5	41
78	Childhood asthma is associated with COPD and known asthma variants in COPDGene: a genome-wide association study. Respiratory Research, 2018, 19, 209.	1.4	41
79	Combined Forced Expiratory Volume in 1 Second and Forced Vital Capacity Bronchodilator Response, Exacerbations, and Mortality in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2019, 16, 826-835.	1.5	41
80	Mechanical Ventilation and Air Leaks After Lung Biopsy for Acute Respiratory Distress Syndrome. Annals of Thoracic Surgery, 2006, 82, 261-266.	0.7	40
81	Integration of Molecular Interactome and Targeted Interaction Analysis to Identify a COPD Disease Network Module. Scientific Reports, 2018, 8, 14439.	1.6	40
82	Comorbidities of COPD Have a Major Impact on Clinical Outcomes, Particularly in African Americans. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2014, 1, 105-114.	0.5	40
83	Longitudinal Modeling of Lung Function Trajectories in Smokers with and without Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1033-1042.	2.5	38
84	Genotype imputation performance of three reference panels using African ancestry individuals. Human Genetics, 2018, 137, 281-292.	1.8	38
85	Identification of Functional Variants in the <i>FAM13A</i> Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Locus by Massively Parallel Reporter Assays. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 52-61.	2.5	38
86	Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations. Human Molecular Genetics, 2018, 27, 1819-1829.	1.4	37
87	Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression. Chest, 2018, 153, 65-76.	0.4	36
88	Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential. Science Advances, 2022, 8, eabl6579.	4.7	36
89	Ensemble genomic analysis in human lung tissue identifies novel genes for chronic obstructive pulmonary disease. Human Genomics, 2018, 12, 1.	1.4	35
90	Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Scientific Reports, 2020, 10, 3361.	1.6	35

#	Article	IF	CITATIONS
91	High-Resolution Melting Curve Analysis of Genomic and Whole-Genome Amplified DNA. Clinical Chemistry, 2008, 54, 2055-2058.	1.5	33
92	DNAH5 is associated with total lung capacity in chronic obstructive pulmonary disease. Respiratory Research, 2014, 15, 97.	1.4	33
93	Whole exome sequencing analysis in severe chronic obstructive pulmonary disease. Human Molecular Genetics, 2018, 27, 3801-3812.	1.4	32
94	Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants. Nature Communications, 2020, 11, 5182.	5.8	32
95	Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD. BMC Systems Biology, 2014, 8, 78.	3.0	31
96	The impact of genetic variation and cigarette smoke on DNA methylation in current and former smokers from the COPDGene study. Epigenetics, 2015, 10, 1064-1073.	1.3	31
97	Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. Cell Genomics, 2022, 2, 100084.	3.0	29
98	Sex-Based Genetic Association Study Identifies <i>CELSR1</i> as a Possible Chronic Obstructive Pulmonary Disease Risk Locus among Women. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 332-341.	1.4	28
99	Influence of <i><scp>SIGLEC9</scp></i> polymorphisms on <scp>COPD</scp> phenotypes including exacerbation frequency. Respirology, 2017, 22, 684-690.	1.3	27
100	<i>IREB2</i> and <i>GALC</i> Are Associated with Pulmonary Artery Enlargement in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 365-376.	1.4	26
101	Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COPD. Respiratory Research, 2021, 22, 127.	1.4	26
102	Identification of Chronic Obstructive Pulmonary Disease Axes That Predict All-Cause Mortality. American Journal of Epidemiology, 2018, 187, 2109-2116.	1.6	25
103	Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study. PLoS ONE, 2014, 9, e91621.	1.1	25
104	Phenotypic and genetic heterogeneity among subjects with mild airflow obstruction in COPDGene. Respiratory Medicine, 2014, 108, 1469-1480.	1.3	24
105	Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 20-28.	1.4	24
106	Subtypes of COPD Have Unique Distributions and Differential Risk of Mortality. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2019, 6, 400-413.	0.5	24
107	Genome-wide assessment of gene-by-smoking interactions in COPD. Scientific Reports, 2018, 8, 9319.	1.6	23
108	Variable Susceptibility to Cigarette Smoke–Induced Emphysema in 34 Inbred Strains of Mice Implicates <i>Abi3bp</i> in Emphysema Susceptibility. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 367-375.	1.4	22

#	Article	IF	CITATIONS
109	Whole-Genome Sequencing in Severe Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 614-622.	1.4	22
110	Rare Variants in Known Susceptibility Loci and Their Contribution to Risk of Lung Cancer. Journal of Thoracic Oncology, 2018, 13, 1483-1495.	0.5	22
111	Secondary polycythemia in chronic obstructive pulmonary disease: prevalence and risk factors. BMC Pulmonary Medicine, 2021, 21, 235.	0.8	22
112	Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules. Network and Systems Medicine, 2020, 3, 159-181.	2.7	22
113	Interaction of Cigarette Smoking and Polygenic Risk Score on Reduced Lung Function. JAMA Network Open, 2021, 4, e2139525.	2.8	22
114	Genome-Wide Gene-by-Smoking Interaction Study of Chronic Obstructive Pulmonary Disease. American Journal of Epidemiology, 2021, 190, 875-885.	1.6	21
115	Identification of an emphysema-associated genetic variant near TGFB2 with regulatory effects in lung fibroblasts. ELife, 2019, 8, .	2.8	21
116	Alpha-1 Antitrypsin MZ Heterozygosity Is an Endotype of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 313-323.	2.5	21
117	Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1465-1474.	2.5	20
118	Integrative genomics identifies new genes associated with severe COPD and emphysema. Respiratory Research, 2018, 19, 46.	1.4	20
119	Genome-Wide Association Study: Functional Variant rs2076295 Regulates Desmoplakin Expression in Airway Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1225-1236.	2.5	20
120	Common Genetic Variants Associated with Resting Oxygenation in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 678-687.	1.4	19
121	Dissecting the genetics of chronic mucus hypersecretion in smokers with and without COPD. European Respiratory Journal, 2015, 45, 60-75.	3.1	19
122	Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Human Molecular Genetics, 2019, 28, 2352-2364.	1.4	19
123	Rare deleterious germline variants and risk of lung cancer. Npj Precision Oncology, 2021, 5, 12.	2.3	19
124	Beyond GWAS in COPD: Probing the Landscape between Gene-Set Associations, Genome-Wide Associations and Protein-Protein Interaction Networks. Human Heredity, 2014, 78, 131-139.	0.4	18
125	Integrating Multiple Correlated Phenotypes for Genetic Association Analysis by Maximizing Heritability. Human Heredity, 2015, 79, 93-104.	0.4	18
126	Analysis of Exonic Elastin Variants in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 751-755.	1.4	17

#	Article	IF	CITATIONS
127	Genomics and response to long-term oxygen therapy in chronic obstructive pulmonary disease. Journal of Molecular Medicine, 2018, 96, 1375-1385.	1.7	17
128	Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene. PLoS Genetics, 2019, 15, e1008229.	1.5	17
129	Obstructive lung diseases and risk of rheumatoid arthritis. Expert Review of Clinical Immunology, 2020, 16, 37-50.	1.3	17
130	Protective effect of club cell secretory protein (CC-16) on COPD risk and progression: a Mendelian randomisation study. Thorax, 2020, 75, 934-943.	2.7	17
131	Identification of putative causal loci in whole-genome sequencing data via knockoff statistics. Nature Communications, 2021, 12, 3152.	5.8	17
132	<i>ZBTB33</i> Is Mutated in Clonal Hematopoiesis and Myelodysplastic Syndromes and Impacts RNA Splicing. Blood Cancer Discovery, 2021, 2, 500-517.	2.6	17
133	Pulmonary Arterial Pruning and Longitudinal Change in Percent Emphysema and Lung Function. Chest, 2021, 160, 470-480.	0.4	17
134	Metabo-Endotypes of Asthma Reveal Differences in Lung Function: Discovery and Validation in Two TOPMed Cohorts. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 288-299.	2.5	17
135	Whole blood RNA sequencing reveals a unique transcriptomic profile in patients with ARDS following hematopoietic stem cell transplantation. Respiratory Research, 2019, 20, 15.	1.4	16
136	Folliculin mutations are not associated with severe COPD. BMC Medical Genetics, 2008, 9, 120.	2.1	15
137	What do polymorphisms tell us about the mechanisms of COPD?. Clinical Science, 2017, 131, 2847-2863.	1.8	15
138	Visual Assessment of Chest Computed Tomographic Images Is Independently Useful for Genetic Association Analysis in Studies of Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2017, 14, 33-40.	1.5	15
139	Integrative Genomics Analysis Identifies ACVR1B as a Candidate Causal Gene of Emphysema Distribution. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 388-398.	1.4	15
140	Pulmonary artery enlargement and mortality risk in moderate to severe COPD: results from COPDGene. European Respiratory Journal, 2020, 55, 1901812.	3.1	15
141	Heterozygosity of the Alpha 1â€Antitrypsin Pi*Z Allele and Risk of Liver Disease. Hepatology Communications, 2021, 5, 1348-1361.	2.0	15
142	A polygenic risk score for asthma in a large racially diverse population. Clinical and Experimental Allergy, 2021, 51, 1410-1420.	1.4	15
143	Development of a Blood-based Transcriptional Risk Score for Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 161-170.	2.5	15
144	Genomeâ€wide association analysis of COVIDâ€19 mortality risk in SARSâ€CoVâ€2 genomes identifies mutation in the SARSâ€CoVâ€2 spike protein that colocalizes with P.1 of the Brazilian strain. Genetic Epidemiology, 2021, 45, 685-693.	0.6	14

#	Article	IF	CITATIONS
145	Whole-genome sequencing in diverse subjects identifies genetic correlates of leukocyte traits: The NHLBI TOPMed program. American Journal of Human Genetics, 2021, 108, 1836-1851.	2.6	14
146	Relative contributions of family history and a polygenic risk score on COPD and related outcomes: COPDGene and ECLIPSE studies. BMJ Open Respiratory Research, 2020, 7, e000755.	1.2	14
147	Lung proteomic biomarkers associated with chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L1119-L1130.	1.3	14
148	Boosting Gene Mapping Power and Efficiency with Efficient Exact Variance Component Tests of Single Nucleotide Polymorphism Sets. Genetics, 2016, 204, 921-931.	1.2	13
149	Body mass index change in gastrointestinal cancer and chronic obstructive pulmonary disease is associated with Dedicator of Cytokinesis 1. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 428-436.	2.9	13
150	Protein prediction for trait mapping in diverse populations. PLoS ONE, 2022, 17, e0264341.	1.1	13
151	Traction Bronchiectasis/Bronchiolectasis on CT Scans in Relationship to Clinical Outcomes and Mortality: The COPDGene Study. Radiology, 2022, 304, 694-701.	3.6	13
152	A Between Ethnicities Comparison of Chronic Obstructive Pulmonary Disease Genetic Risk. Frontiers in Genetics, 2020, 11, 329.	1.1	12
153	Statistical Challenges in Sequence-Based Association Studies with Population- and Family-Based Designs. Statistics in Biosciences, 2013, 5, 54-70.	0.6	11
154	Interpretable Clustering via Discriminative Rectangle Mixture Model. , 2016, , .		11
155	GWAS and systems biology analysis of depressive symptoms among smokers from the COPDGene cohort. Journal of Affective Disorders, 2019, 243, 16-22.	2.0	11
156	FSTL-1 Attenuation Causes Spontaneous Smoke-Resistant Pulmonary Emphysema. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 934-945.	2.5	11
157	A systematic analysis of protein-altering exonic variants in chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L130-L143.	1.3	11
158	Genetic variation in genes regulating skeletal muscle regeneration and tissue remodelling associated with weight loss in chronic obstructive pulmonary disease. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1803-1817.	2.9	11
159	Associations of Monocyte Count and Other Immune Cell Types with Interstitial Lung Abnormalities. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 795-805.	2.5	11
160	Genetic regulation of expression of leukotriene A4 hydrolase. ERJ Open Research, 2016, 2, 00058-2015.	1.1	10
161	On the association analysis of genomeâ€sequencing data: A spatial clustering approach for partitioning the entire genome into nonoverlapping windows. Genetic Epidemiology, 2017, 41, 332-340.	0.6	10
162	Sequencing Analysis at 8p23 Identifies Multiple Rare Variants in DLC1 Associated with Sleep-Related Oxyhemoglobin Saturation Level. American Journal of Human Genetics, 2019, 105, 1057-1068.	2.6	10

#	Article	IF	CITATIONS
163	Relationship Between Rheumatoid Arthritis and Pulmonary Function Measures on Spirometry in the UK Biobank. Arthritis and Rheumatology, 2021, 73, 1994-2002.	2.9	10
164	A polygenic risk score and age of diagnosis of COPD. European Respiratory Journal, 2022, 60, 2101954.	3.1	10
165	High-Throughput Sequencing in Respiratory, Critical Care, and Sleep Medicine Research. An Official American Thoracic Society Workshop Report. Annals of the American Thoracic Society, 2019, 16, 1-16.	1.5	9
166	Emphysema Progression and Lung Function Decline Among Angiotensin Converting Enzyme Inhibitors and Angiotensin-Receptor Blockade Users in the COPDGene Cohort. Chest, 2021, 160, 1245-1254.	0.4	9
167	Genetic Variation in the Mitochondrial Clycerolâ€3â€Phosphate Acyltransferase Is Associated With Liver Injury. Hepatology, 2021, 74, 3394-3408.	3.6	9
168	A Likelihood-Free Approach for Characterizing Heterogeneous Diseases in Large-Scale Studies. Lecture Notes in Computer Science, 2017, 10265, 170-183.	1.0	9
169	A Risk Prediction Model for Mortality Among Smokers in the COPDGene® Study. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2020, 7, 346-361.	0.5	9
170	Generative Method to Discover Genetically Driven Image Biomarkers. Lecture Notes in Computer Science, 2015, 24, 30-42.	1.0	8
171	A Genome-Wide Linkage Study for Chronic Obstructive Pulmonary Disease in a Dutch Genetic Isolate Identifies Novel Rare Candidate Variants. Frontiers in Genetics, 2018, 9, 133.	1.1	8
172	Genome-Wide Association Analysis of Single-Breath D <scp>l</scp> _{CO} . American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 523-531.	1.4	8
173	locStra: Fast analysis of regional/global stratification in wholeâ€genome sequencingÂstudies. Genetic Epidemiology, 2021, 45, 82-98.	0.6	8
174	Intermediate versus standard dose heparin prophylaxis in COVID-19 ICU patients: A propensity score-matched analysis. Thrombosis Research, 2021, 203, 57-60.	0.8	8
175	Interstitial Lung Abnormalities, Emphysema, and Spirometry in Smokers. Chest, 2022, 161, 999-1010.	0.4	8
176	Interstitial lung abnormalities are associated with decreased mean telomere length. European Respiratory Journal, 2022, 60, 2101814.	3.1	8
177	A Metabolomic Severity Score for Airflow Obstruction and Emphysema. Metabolites, 2022, 12, 368.	1.3	8
178	Common and Rare Variants Genetic Association Analysis of Cigarettes per Day Among Ever-Smokers in Chronic Obstructive Pulmonary Disease Cases and Controls. Nicotine and Tobacco Research, 2019, 21, 714-722.	1.4	7
179	DSP variants may be associated with longitudinal change in quantitative emphysema. Respiratory Research, 2019, 20, 160.	1.4	7
180	Mixed-model admixture mapping identifies smoking-dependent loci of lung function in African Americans. European Journal of Human Genetics, 2020, 28, 656-668.	1.4	7

#	Article	IF	CITATIONS
181	Chromatin Landscapes of Human Lung Cells Predict Potentially Functional Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Variants. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 92-102.	1.4	7
182	Improved prediction of smoking status via isoform-aware RNA-seq deep learning models. PLoS Computational Biology, 2021, 17, e1009433.	1.5	7
183	Polygenic transcriptome risk scores for COPD and lung function improve cross-ethnic portability of prediction in the NHLBI TOPMed program. American Journal of Human Genetics, 2022, 109, 857-870.	2.6	7
184	The Proteomic Profile of Interstitial Lung Abnormalities. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 337-346.	2.5	7
185	Lung tissue shows divergent gene expression between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Respiratory Research, 2022, 23, 97.	1.4	7
186	Diffuse Idiopathic Skeletal Hyperostosis in Smokers and Restrictive Spirometry Pattern: An Analysis of the COPDGene Cohort. Journal of Rheumatology, 2020, 47, 531-538.	1.0	6
187	Effect of 6p21 region on lung function is modified by smoking: a genome-wide interaction study. Scientific Reports, 2020, 10, 13075.	1.6	6
188	An independently validated, portable algorithm for the rapid identification of COPD patients using electronic health records. Scientific Reports, 2021, 11, 19959.	1.6	6
189	<i>CFTR</i> variants are associated with chronic bronchitis in smokers. European Respiratory Journal, 2022, 60, 2101994.	3.1	6
190	Associations of the <i>MUC5B</i> promoter variant with timing of interstitial lung disease and rheumatoid arthritis onset. Rheumatology, 2022, 61, 4915-4923.	0.9	6
191	CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Science Advances, 2022, 8, .	4.7	6
192	<i>FARVATX</i> : Familyâ€Based Rare Variant Association Test for X‣inked Genes. Genetic Epidemiology, 2016, 40, 475-485.	0.6	5
193	Identifying a Deletion Affecting Total Lung Capacity Among Subjects in the COPDGene Study Cohort. Genetic Epidemiology, 2016, 40, 81-88.	0.6	5
194	Progress in disease progression genetics: dissecting the genetic origins of lung function decline in COPD. Thorax, 2017, 72, 389-390.	2.7	5
195	Clustering with Domain-Specific Usefulness Scores. , 2017, , 207-215.		5
196	Whole Genome Sequencing Identifies CRISPLD2 as a Lung Function Gene in Children With Asthma. Chest, 2019, 156, 1068-1079.	0.4	5
197	Assessing pleiotropy and mediation in genetic loci associated with chronic obstructive pulmonary disease. Genetic Epidemiology, 2019, 43, 318-329.	0.6	5
198	An Integrative Genomic Strategy Identifies sRAGE as a Causal and Protective Biomarker of Lung Function. Chest, 2022, 161, 76-84.	0.4	5

#	Article	IF	CITATIONS
199	Genetics and epidemiology of AATD. , 2019, , 27-38.		5
200	Powerful gene-based testing by integrating long-range chromatin interactions and knockoff genotypes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
201	A flexible and nearly optimal sequential testing approach to randomized testing: QUICKâ€STOP. Genetic Epidemiology, 2020, 44, 139-147.	0.6	4
202	A novel locus for exertional dyspnoea in childhood asthma. European Respiratory Journal, 2021, 57, 2001224.	3.1	4
203	Hemizygous Deletion on Chromosome 3p26.1 Is Associated with Heavy Smoking among African American Subjects in the COPDGene Study. PLoS ONE, 2016, 11, e0164134.	1.1	4
204	An interferon-inducible signature of airway disease from blood gene expression profiling. European Respiratory Journal, 2022, 59, 2100569.	3.1	4
205	Turning subtypes into disease axes to improve prediction of COPD progression. Thorax, 2019, 74, 906-909.	2.7	3
206	HLA-C and KIR permutations influence chronic obstructive pulmonary disease risk. JCI Insight, 2021, 6, .	2.3	3
207	Lung, Fat and Bone: Increased Adiponectin Associates with the Combination of Smoking-Related Lung Disease and Osteoporosis. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2018, 5, 134-143.	0.5	3
208	Genome-wide association study of susceptibility to hospitalised respiratory infections. Wellcome Open Research, 0, 6, 290.	0.9	3
209	Why is Disease Penetration So Variable? Role of Genetic Modifiers of Lung Function in Alpha-1 Antitrypsin Deficiency. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2020, 7, 214-223.	0.5	3
210	Alternative poly-adenylation modulates α1-antitrypsin expression in chronic obstructive pulmonary disease. PLoS Genetics, 2021, 17, e1009912.	1.5	3
211	Dual beta process priors for latent cluster discovery in chronic obstructive pulmonary disease. , 2014, , .		2
212	¡HOLA! The Influence of Being Hispanic on Lung Ancestry. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 148-149.	2.5	2
213	Dissecting respiratory disease heterogeneity through the genetics of diffusing capacity. European Respiratory Journal, 2018, 52, 1801468.	3.1	2
214	Spherical Topic Models for Imaging Phenotype Discovery in Genetic Studies. Lecture Notes in Computer Science, 2014, 8677, 107-117.	1.0	2
215	Assessing the contribution of rare genetic variants to phenotypes of chronic obstructive pulmonary disease using whole-genome sequence data. Human Molecular Genetics, 2022, 31, 3873-3885.	1.4	2
216	Adrenal insufficiency and ICS: genetics takes a breath. Lancet Respiratory Medicine, the, 2018, 6, 407-408.	5.2	1

#	Article	IF	CITATIONS
217	Trait Insights Gained by Comparing Genome-Wide Association Study Results using Different Chronic Obstructive Pulmonary Disease Definitions. AMIA Summits on Translational Science Proceedings, 2020, 2020, 278-287.	0.4	1
218	A Smoothed Version of the Lassosum Penalty for Fitting Integrated Risk Models Using Summary Statistics or Individual-Level Data. Genes, 2022, 13, 112.	1.0	1
219	A genome-wide association study of bronchodilator response in participants of European and African ancestry from six independent cohorts. ERJ Open Research, 2022, 8, 00484-2021.	1.1	1
220	Towards an integrative genomics of lung function. Lancet Respiratory Medicine, the, 2015, 3, 739-741.	5.2	0
221	Genetics and Pharmacogenetics of COPD. Respiratory Medicine, 2020, , 39-55.	0.1	0
222	Reply. Arthritis and Rheumatology, 2022, 74, 1096-1097.	2.9	0
223	Covariate adjustment of spirometric and smoking phenotypes: The potential of neural network models. PLoS ONE, 2022, 17, e0266752.	1.1	0
224	Heritability Analyses Uncover Shared Genetic Effects of Lung Function and Change over Time. Genes, 2022, 13, 1261.	1.0	0