Sha Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4744537/publications.pdf Version: 2024-02-01

SHA \λ/ANC

#	Article	IF	CITATIONS
1	Highly ionic conductive and mechanically strong MXene/CNF membranes for osmotic energy conversion. Sustainable Energy and Fuels, 2022, 6, 299-308.	2.5	11
2	Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane. Carbohydrate Polymers, 2022, 280, 119023.	5.1	28
3	Identification, Analysis and Gene Cloning of the SWEET Gene Family Provide Insights into Sugar Transport in Pomegranate (Punica granatum). International Journal of Molecular Sciences, 2022, 23, 2471.	1.8	7
4	lon transport property, structural features, and applications of cellulose-based nanofluidic platforms — A review. Carbohydrate Polymers, 2022, 289, 119406.	5.1	3
5	Genome-wide identification and characterization of bZIP gene family and cloning of candidate genes for anthocyanin biosynthesis in pomegranate (Punica granatum). BMC Plant Biology, 2022, 22, 170.	1.6	17
6	A bio-inspired MXene/quaternary chitosan membrane with a "brick-and-mortar―structure towards high-performance photothermal conversion. Journal of Materials Chemistry C, 2022, 10, 8043-8049.	2.7	7
7	Genome-wide identification, gene cloning, subcellular location and expression analysis of SPL gene family in P. granatum L. BMC Plant Biology, 2021, 21, 400.	1.6	12
8	Alkali Halide Boost of Carbon Nitride for Photocatalytic H ₂ Evolution in Seawater. ACS Applied Materials & Interfaces, 2020, 12, 48526-48532.	4.0	19
9	Strong, Water-Stable Ionic Cable from Bio-Hydrogel. Chemistry of Materials, 2019, 31, 9288-9294.	3.2	24
10	Green and Superhydrophobic Coatings Based on Tailor-Modified Lignocellulose Nanofibrils for Self-Cleaning Surfaces. Industrial & Engineering Chemistry Research, 2019, 58, 20323-20330.	1.8	23
11	Transparent, Anisotropic Biofilm with Aligned Bacterial Cellulose Nanofibers. Advanced Functional Materials, 2018, 28, 1707491.	7.8	142
12	Flexible, Scalable, and Highly Conductive Garnetâ€Polymer Solid Electrolyte Templated by Bacterial Cellulose. Advanced Energy Materials, 2018, 8, 1703474.	10.2	189
13	Highâ€Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. Advanced Energy Materials, 2018, 8, 1701616.	10.2	255
14	Flexible, Bio-Compatible Nanofluidic Ion Conductor. Chemistry of Materials, 2018, 30, 7707-7713.	3.2	54
15	Muscleâ€Inspired Highly Anisotropic, Strong, Ionâ€Conductive Hydrogels. Advanced Materials, 2018, 30, e1801934.	11.1	408
16	Super‣trong, Super‣tiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers. Advanced Materials, 2017, 29, 1702498.	11.1	185
17	In Situ Carbonic Acid from CO ₂ : A Green Acid for Highly Effective Conversion of Cellulose in the Presence of Lewis acid. ACS Sustainable Chemistry and Engineering, 2016, 4, 4146-4155.	3.2	35
18	Light management in plastic–paper hybrid substrate towards high-performance optoelectronics. Energy and Environmental Science, 2016, 9, 2278-2285.	15.6	103

Sha Wang

#	Article	IF	CITATIONS
19	A new strategy to tailor the structure of sustainable 3D hierarchical porous N-self-doped carbons from renewable biomass for high-performance supercapacitors and CO ₂ capture. RSC Advances, 2016, 6, 34261-34270.	1.7	29
20	Flexible nanocomposites with ultrahigh specific areal capacitance and tunable properties based on a cellulose derived nanofiber-carbon sheet framework coated with polyaniline. Journal of Materials Chemistry A, 2016, 4, 13352-13362.	5.2	46
21	3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO ₂ adsorption. RSC Advances, 2016, 6, 15788-15795.	1.7	127
22	An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. Journal of Materials Chemistry A, 2015, 3, 8772-8781.	5.2	186
23	Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals. RSC Advances, 2015, 5, 13878-13885.	1.7	35
24	Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates. Carbohydrate Polymers, 2015, 118, 44-51.	5.1	69
25	Choline chloride/urea as an effective plasticizer for production of cellulose films. Carbohydrate Polymers, 2015, 117, 133-139.	5.1	84
26	Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. Carbohydrate Polymers, 2014, 111, 400-403.	5.1	22
27	Cesium Salts as Mild Chemical Scissors To Trim Carbon Nitride for Photocatalytic H ₂ Evolution. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	2