
David J Currie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4744268/publications.pdf Version: 2024-02-01

DAVID I CUDDIE

#	Article	IF	CITATIONS
1	Can habitat suitability estimated from MaxEnt predict colonizations and extinctions?. Diversity and Distributions, 2021, 27, 873-886.	1.9	32
2	How perilous are broad-scale correlations with environmental variables?. Frontiers of Biogeography, 2020, 12, .	0.8	8
3	Where Newton might have taken ecology. Global Ecology and Biogeography, 2019, 28, 18-27.	2.7	29
4	Is habitat fragmentation bad for biodiversity?. Biological Conservation, 2019, 230, 179-186.	1.9	329
5	The origins and maintenance of global species endemism. Global Ecology and Biogeography, 2019, 28, 170-183.	2.7	20
6	At the landscape level, birds respond strongly to habitat amount but weakly to fragmentation. Diversity and Distributions, 2018, 24, 629-639.	1.9	54
7	Are North American bird species' geographic ranges mainly determined by climate?. Global Ecology and Biogeography, 2018, 27, 461-473.	2.7	15
8	The extent and predictability of the biodiversity–carbon correlation. Ecology Letters, 2018, 21, 365-375.	3.0	46
9	Using regional patterns for predicting local temporal change: a test by natural experiment in the Great Lakes bioregion, Ontario, Canada. Diversity and Distributions, 2017, 23, 261-271.	1.9	3
10	Climate change is not a major driver of shifts in the geographical distributions of North American birds. Global Ecology and Biogeography, 2017, 26, 333-346.	2.7	39
11	Mountain passes are higher not only in the tropics. Ecography, 2017, 40, 459-460.	2.1	4
12	Can the richness–climate relationship be explained by systematic variations in how individual species' ranges relate to climate?. Global Ecology and Biogeography, 2016, 25, 527-539.	2.7	13
13	Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal — A Demonstration Using Bird and Mammal Range Maps. PLoS ONE, 2016, 11, e0166243.	1.1	11
14	The weakness of evidence supporting tropical niche conservatism as a main driver of current richness–temperature gradients. Global Ecology and Biogeography, 2015, 24, 795-803.	2.7	11
15	Long Time-Scale Recurrences in Ecology: Detecting Relationships Between Climate Dynamics and Biodiversity Along a Latitudinal Gradient. Understanding Complex Systems, 2015, , 335-347.	0.3	6
16	An empirical investigation of why species–area relationships overestimate species losses. Ecology, 2015, 96, 1253-1263.	1.5	20
17	Contemporaneous climate directly controls broadâ€scale patterns of woody plant diversity: a test by a natural experiment over 14,000 years. Global Ecology and Biogeography, 2015, 24, 97-106.	2.7	25
18	Can climate explain interannual local extinctions among bird species?. Journal of Biogeography, 2014, 41, 443-451.	1.4	5

DAVID J CURRIE

#	Article	IF	CITATIONS
19	Does climate limit species richness by limiting individual species' ranges?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132695.	1.2	43
20	A consistent occupancy–climate relationship across birds and mammals of the Americas. Oikos, 2014, 123, 1029-1036.	1.2	25
21	Big Science vs. Little Science: How Scientific Impact Scales with Funding. PLoS ONE, 2013, 8, e65263.	1.1	125
22	Protecting Endangered Species: Do the Main Legislative Tools Work?. PLoS ONE, 2012, 7, e35730.	1.1	37
23	How are tree species distributed in climatic space? A simple and general pattern. Global Ecology and Biogeography, 2012, 21, 1157-1166.	2.7	64
24	Quantifying the importance of regional and local filters for community trait structure in tropical and temperate zones. Ecology, 2011, 92, 903-914.	1.5	52
25	How, and how much, natural cover loss increases species richness. Global Ecology and Biogeography, 2011, 20, 857-867.	2.7	44
26	The completeness of the continental fossil record and its impact on patterns of diversification. Paleobiology, 2010, 36, 51-60.	1.3	41
27	Spatial speciesâ€richness gradients across scales: a metaâ€analysis. Journal of Biogeography, 2009, 36, 132-147.	1.4	573
28	Evolutionary constraints on regional faunas: whom, but not how many. Ecology Letters, 2009, 12, 57-65.	3.0	76
29	Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 2009, 12, 873-886.	3.0	286
30	Human land use, agriculture, pesticides and losses of imperiled species. Diversity and Distributions, 2009, 15, 242-253.	1.9	118
31	The utility of covariances: a response to Ranta et al. Oikos, 2008, 117, 1912-1913.	1.2	5
32	TESTS OF THE MID-DOMAIN HYPOTHESIS: A REVIEW OF THE EVIDENCE. Ecological Monographs, 2008, 78, 3-18.	2.4	77
33	Compensatory dynamics are rare in natural ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3273-3277.	3.3	264
34	The Macroecological Contribution to Global Change Solutions. Science, 2007, 316, 1581-1584.	6.0	192
35	A UNIFIED MODEL OF AVIAN SPECIES RICHNESS ON ISLANDS AND CONTINENTS. Ecology, 2007, 88, 1309-1321.	1.5	38
36	Testing, as opposed to supporting, the Mid-domain Hypothesis: a response to. Ecology Letters, 2007, 10, E9-E10.	3.0	6

DAVID J CURRIE

#	Article	IF	CITATIONS
37	A test of Metabolic Theory as the mechanism underlying broad-scale species-richness gradients. Global Ecology and Biogeography, 2007, 16, 170-178.	2.7	68
38	Disentangling the roles of environment and space in ecology. Journal of Biogeography, 2007, 34, 2009-2011.	1.4	42
39	The missing Madagascan mid-domain effect. Ecology Letters, 2006, 9, 149-159.	3.0	36
40	A global model of island biogeography. Global Ecology and Biogeography, 2006, 15, 72-81.	2.7	112
41	Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 2004, 7, 1121-1134.	3.0	1,011
42	A Globally Consistent Richness limate Relationship for Angiosperms. American Naturalist, 2003, 161, 523-536.	1.0	468
43	Does climate determine broad-scale patterns of species richness? A test of the causal link by natural experiment. Clobal Ecology and Biogeography, 2003, 12, 461-473.	2.7	85
44	ENERGY, WATER, AND BROAD-SCALE GEOGRAPHIC PATTERNS OF SPECIES RICHNESS. Ecology, 2003, 84, 3105-3117.	1.5	1,868
45	Conservation of endangered species and the patterns and propensities of biodiversity. Comptes Rendus - Biologies, 2003, 326, 98-103.	0.1	5
46	Importance of patch scale vs landscape scale on selected forest birds. Oikos, 2002, 96, 110-118.	1.2	88
47	Global Change in Forests: Responses of Species, Communities, and Biomes. BioScience, 2001, 51, 765.	2.2	371
48	THE DIVERSITY–DISTURBANCE RELATIONSHIP: IS IT GENERALLY STRONG AND PEAKED?. Ecology, 2001, 82, 3479-3492.	1.5	154
49	Projected Effects of Climate Change on Patterns of Vertebrate and Tree Species Richness in the Conterminous United States. Ecosystems, 2001, 4, 216-225.	1.6	81
50	The Diversity-Disturbance Relationship: Is It Generally Strong and Peaked?. Ecology, 2001, 82, 3479.	1.5	330
51	Changing Species Richness and Composition in Canadian National Parks. Conservation Biology, 2000, 14, 1099-1109.	2.4	66
52	A re-examination of the expected effects of disturbance on diversity. Oikos, 2000, 88, 483-493.	1.2	86
53	Changing Species Richness and Composition in Canadian National Parks. , 2000, 14, 1099.		1
54	Assessing the strength of top-down influences on plankton abundance in unmanipulated lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 427-436.	0.7	33

DAVID J CURRIE

#	Article	IF	CITATIONS
55	The relative importance of evolutionary and environmental controls on broad-scale patterns of species richness in North America. Ecoscience, 1999, 6, 329-337.	0.6	72
56	Some general propositions about the study of spatial patterns of species richness. Ecoscience, 1999, 6, 392-399.	0.6	70
57	Global Patterns of Tree Species Richness in Moist Forests: Another Look. Oikos, 1998, 81, 598.	1.2	100
58	Lepidopteran richness patterns in North America. Ecoscience, 1998, 5, 448-453.	0.6	62
59	The Species Richness-Energy Hypothesis in a System Where Historical Factors Are Thought to Prevail: Coral Reefs. American Naturalist, 1996, 148, 138-159.	1.0	153
60	Does acid rain increase human exposure to mercury? A review and analysis of recent literature. Environmental Toxicology and Chemistry, 1995, 14, 809-813.	2.2	11
61	Using empirical methods to assess the risks of mercury accumulation in fish from lakes receiving acid rain. Human and Ecological Risk Assessment (HERA), 1995, 1, 306-322.	1.7	7
62	Effects of Human Activity on Global Extinction Risk. Conservation Biology, 1995, 9, 1528-1538.	2.4	157
63	Does acid rain increase human exposure to mercury? A review and analysis of recent literature. , 1995, 14, 809.		1
64	Species-energy theory and patterns of species richness: I. Patterns of bird, angiosperm, and mammal species richness on islands. Biological Conservation, 1993, 63, 137-144.	1.9	38
65	Species-energy theory and patterns of species richness: II. Predicting mammal species richness on isolated nature reserves. Biological Conservation, 1993, 63, 145-148.	1.9	15
66	Global Patterns of Animal Abundance and Species Energy Use. Oikos, 1993, 67, 56.	1.2	139
67	The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnology and Oceanography, 1991, 36, 708-728.	1.6	112
68	Energy and Large-Scale Patterns of Animal- and Plant-Species Richness. American Naturalist, 1991, 137, 27-49.	1.0	1,482
69	Largeâ€scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus. Limnology and Oceanography, 1990, 35, 1437-1455.	1.6	151
70	Large-scale biogeographical patterns of species richness of trees. Nature, 1987, 329, 326-327.	13.7	636
71	A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus1. Limnology and Oceanography, 1984, 29, 298-310.	1.6	293
72	Can bacteria outcompete phytoplankton for phosphorus? a chemostat test. Microbial Ecology, 1984, 10, 205-216.	1.4	92

#	Article	IF	CITATIONS
73	The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater1. Limnology and Oceanography, 1984, 29, 311-321.	1.6	205
74	Regional-to-global patterns of biodiversity, and what they have to say about mechanisms. , 0, , 258-282.		10