Utpal B Pajvani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/474352/publications.pdf Version: 2024-02-01

Πτόλι Β. Ρλινλιί

#	Article	IF	CITATIONS
1	TOX4, an insulin receptor-independent regulator of hepatic glucose production, is activated in diabetic liver. Cell Metabolism, 2022, 34, 158-170.e5.	16.2	13
2	Notch-mediated Ephrin signaling disrupts islet architecture and \hat{I}^2 cell function. JCI Insight, 2022, 7, .	5.0	5
3	MafA Regulation in β-Cells: From Transcriptional to Post-Translational Mechanisms. Biomolecules, 2022, 12, 535.	4.0	11
4	TAZ-induced Cybb contributes to liver tumor formation in non-alcoholic steatohepatitis. Journal of Hepatology, 2022, 76, 910-920.	3.7	27
5	Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features. Journal of Hepatology, 2021, 74, 613-626.	3.7	34
6	Maladaptive regeneration — the reawakening of developmental pathways in NASH and fibrosis. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 131-142.	17.8	64
7	MTOR and Beta Cell Adaptation in T2D. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1466-e1467.	3.6	1
8	Adipocyte PHLPP2 inhibition prevents obesity-induced fatty liver. Nature Communications, 2021, 12, 1822.	12.8	17
9	Metformin Is Associated With a Lower Risk of Atrial Fibrillation and Ventricular Arrhythmias Compared With Sulfonylureas. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009115.	4.8	26
10	Angiotensin converting enzyme 2 is a novel target of the Î ³ -secretase complex. Scientific Reports, 2021, 11, 9803.	3.3	13
11	Hepatocyte TLR4 triggers inter-hepatocyte Jagged1/Notch signaling to determine NASH-induced fibrosis. Science Translational Medicine, 2021, 13, .	12.4	49
12	Zonation in NASH – A key paradigm for understanding pathophysiology and clinical outcomes. Liver International, 2021, 41, 2534-2546.	3.9	16
13	Diabetic ketoacidosis and mortality in COVID-19 infection. Diabetes and Metabolism, 2021, 47, 101267.	2.9	25
14	A genetic hypothesis for burntâ€out steatohepatitis. Liver International, 2021, 41, 2816-2818.	3.9	8
15	An Ultradian Notch in Beta-Cell Development. New England Journal of Medicine, 2020, 383, 80-82.	27.0	1
16	Inhibition of Î ³ -secretase in adipocytes leads to altered IL-6 secretion and adipose inflammation. Adipocyte, 2020, 9, 326-335.	2.8	1
17	Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology, 2020, 158, 1913-1928.	1.3	346
18	Inhibition of PU.1 ameliorates metabolic dysfunction and non-alcoholic steatohepatitis. Journal of Hepatology, 2020, 73, 361-370.	3.7	24

UTPAL B PAJVANI

#	Article	IF	CITATIONS
19	Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 969-986.e7.	16.2	117
20	Liver-selective γ-secretase inhibition ameliorates diet-induced hepatic steatosis, dyslipidemia and atherosclerosis. Biochemical and Biophysical Research Communications, 2020, 527, 979-984.	2.1	7
21	Targeted Delivery of Notch Inhibitor Attenuates Obesity-Induced Glucose Intolerance and Liver Fibrosis. ACS Nano, 2020, 14, 6878-6886.	14.6	33
22	Dietary Saturated Fat Promotes Arrhythmia by Activating NOX2 (NADPH Oxidase 2). Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007573.	4.8	21
23	Pathophysiology of drug induced weight and metabolic effects: findings from an RCT in healthy volunteers treated with olanzapine, iloperidone, or placebo. Journal of Psychopharmacology, 2018, 32, 533-540.	4.0	19
24	Î ³ -Secretase Inhibition Lowers Plasma Triglyceride-Rich Lipoproteins by Stabilizing the LDL Receptor. Cell Metabolism, 2018, 27, 816-827.e4.	16.2	18
25	Notch signaling dynamically regulates adult Î ² cell proliferation and maturity. Journal of Clinical Investigation, 2018, 129, 268-280.	8.2	41
26	Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Science Translational Medicine, 2018, 10, .	12.4	151
27	Degradation of PHLPP2 by KCTD17, via a Glucagon-Dependent Pathway, Promotes Hepatic Steatosis. Gastroenterology, 2017, 153, 1568-1580.e10.	1.3	25
28	MTORC1 Regulates both General Autophagy and Mitophagy Induction after Oxidative Phosphorylation Uncoupling. Molecular and Cellular Biology, 2017, 37, .	2.3	90
29	Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes. PLoS ONE, 2016, 11, e0145750.	2.5	78
30	Nonalcoholic fatty liver disease: cause or consequence of type 2 diabetes?. Liver International, 2016, 36, 1563-1579.	3.9	126
31	Adipocyte-specific blockade of gamma-secretase, but not inhibition of Notch activity, reduces adipose insulin sensitivity. Molecular Metabolism, 2016, 5, 113-121.	6.5	17
32	"Free―Raptor – a novel regulator of metabolism. Cell Cycle, 2016, 15, 1174-1175.	2.6	2
33	mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nature Communications, 2016, 7, 10255.	12.8	49
34	Hypoglycemia Secondary to Sulfonylurea Ingestion in a Patient with End Stage Renal Disease: Results from a 72-Hour Fast. Case Reports in Endocrinology, 2015, 2015, 1-4.	0.4	2
35	Hepatic SirT1-Dependent Gain of Function of Stearoyl-CoA Desaturase-1 Conveys Dysmetabolic and Tumor Progression Functions. Cell Reports, 2015, 11, 1797-1808.	6.4	21
36	The new biology of diabetes. Diabetologia, 2015, 58, 2459-2468.	6.3	80

3

UTPAL B PAJVANI

#	Article	IF	CITATIONS
37	Calcitonin-Secreting Pancreatic Neuroendocrine Tumors: A Case Report and Review of the Literature. Endocrine Practice, 2014, 20, e140-e144.	2.1	12
38	Molecular pathophysiology of metabolic effects of antipsychotic medications. Trends in Endocrinology and Metabolism, 2014, 25, 593-600.	7.1	95
39	Hepatic Notch Signaling Correlates With Insulin Resistance and Nonalcoholic Fatty Liver Disease. Diabetes, 2013, 62, 4052-4062.	0.6	78
40	Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nature Medicine, 2013, 19, 1054-1060.	30.7	126
41	Calcium Signaling through CaMKII Regulates Hepatic Glucose Production in Fasting and Obesity. Cell Metabolism, 2012, 15, 739-751.	16.2	181
42	Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nature Medicine, 2011, 17, 961-967.	30.7	165
43	Diabetes Insipidus Associated with Hehmophagocytic Lymphohistiocytosis: First Case Report. Endocrine Practice, 2011, 17, e118-e122.	2.1	4
44	Life-Threatening Hyponatremia Following a Low-Iodine Diet: A Case Report and Review of all Reported Cases Report and Review of all Reported Cases. Endocrine Practice, 2011, 17, 766-767.	2.1	1
45	Selective Downregulation of the High–Molecular Weight Form of Adiponectin in Hyperinsulinemia and in Type 2 Diabetes. Diabetes, 2007, 56, 2174-2177.	0.6	175
46	Mice Lacking Adiponectin Show Decreased Hepatic Insulin Sensitivity and Reduced Responsiveness to Peroxisome Proliferator-activated Receptor Î ³ Agonists. Journal of Biological Chemistry, 2006, 281, 2654-2660.	3.4	558
47	Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nature Medicine, 2005, 11, 797-803.	30.7	280
48	Apoptosis Through Targeted Activation of Caspase8 ("ATTAC-miceâ€): Novel Mouse Models of Inducible and Reversible Tissue Ablation. Cell Cycle, 2005, 4, 1141-1145.	2.6	28
49	Regulation of Resistin Expression and Circulating Levels in Obesity, Diabetes, and Fasting. Diabetes, 2004, 53, 1671-1679.	0.6	300
50	Mechanisms of Early Insulin-Sensitizing Effects of Thiazolidinediones in Type 2 Diabetes. Diabetes, 2004, 53, 1621-1629.	0.6	240
51	Complex Distribution, Not Absolute Amount of Adiponectin, Correlates with Thiazolidinedione-mediated Improvement in Insulin Sensitivity. Journal of Biological Chemistry, 2004, 279, 12152-12162.	3.4	1,018
52	Adiponectin acts in the brain to decrease body weight. Nature Medicine, 2004, 10, 524-529.	30.7	722
53	Adiponectin: Systemic contributor to insulin sensitivity. Current Diabetes Reports, 2003, 3, 207-213.	4.2	227
54	Structure-Function Studies of the Adipocyte-secreted Hormone Acrp30/Adiponectin. Journal of Biological Chemistry, 2003, 278, 9073-9085.	3.4	941

#	Article	IF	CITATIONS
55	DIFFERENTIAL GLYCOSYLATION OF INTERLEUKIN 2, THE MOLECULAR BASIS FOR THE NOD Idd3 TYPE 1 DIABETES GENE?. Cytokine, 2000, 12, 477-482.	3.2	66