Matthew N Poy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4743297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence of islet CADM1-mediated immune cell interactions during human type 1 diabetes. JCI Insight, 2022, 7, .	2.3	7
2	The RhoGAP Stard13 controls insulin secretion through F-actin remodeling. Molecular Metabolism, 2018, 8, 96-105.	3.0	17
3	Cadm2 regulates body weight and energy homeostasis in mice. Molecular Metabolism, 2018, 8, 180-188.	3.0	47
4	Neuronal Cell Adhesion Molecule 1 Regulates Leptin Sensitivity and Bone Mass. Calcified Tissue International, 2018, 102, 329-336.	1.5	9
5	Control of hepatic gluconeogenesis by Argonaute2. Molecular Metabolism, 2018, 18, 15-24.	3.0	7
6	Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1. Nature Neuroscience, 2017, 20, 1096-1103.	7.1	59
7	Pregnancy-Associated Plasma Protein-A2 and Anthropometry, Lifestyle, and Biochemical Factors in a Human Adult Population. Scientific Reports, 2017, 7, 10455.	1.6	5
8	Differential Impact of Glucose Administered Intravenously and Orally on Circulating miR-375 Levels in Human Subjects. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3749-3755.	1.8	7
9	microRNA-184 Induces a Commitment Switch to Epidermal Differentiation. Stem Cell Reports, 2017, 9, 1991-2004.	2.3	52
10	MicroRNAs: An adaptive mechanism in the pancreatic β-cell…and beyond?. Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 621-628.	2.2	7
11	The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p. Genome Medicine, 2016, 8, 63.	3.6	35
12	SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity. Journal of Clinical Investigation, 2016, 126, 2706-2720.	3.9	46
13	Insm1 cooperates with <scp>N</scp> eurod1 and <scp>F</scp> oxa2 to maintain mature pancreatic β ell function. EMBO Journal, 2015, 34, 1417-1433.	3.5	77
14	miR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism. Journal of Biological Chemistry, 2015, 290, 20284-20294.	1.6	53
15	Micro-managing the pancreatic β cell. Cell Cycle, 2014, 13, 1216-1217.	1.3	0
16	Argonaute2 Mediates Compensatory Expansion of the Pancreatic β Cell. Cell Metabolism, 2014, 19, 122-134.	7.2	139
17	Argonaute2 Regulates the Pancreatic β-Cell Secretome. Molecular and Cellular Proteomics, 2013, 12, 1214-1225.	2.5	42
18	Epithelial microRNAs regulate gut mucosal immunity via epithelium–T cell crosstalk. Nature Immunology, 2011, 12, 239-246.	7.0	180

Matthew N Poy

#	Article	IF	CITATIONS
19	Re-dicing the pancreatic β-cell: do microRNAs define cellular identity?. EMBO Journal, 2011, 30, 797-799.	3.5	4
20	<i>miR-375</i> maintains normal pancreatic α- and β-cell mass. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5813-5818.	3.3	710
21	A skin microRNA promotes differentiation by repressing â€ [~] stemness'. Nature, 2008, 452, 225-229.	13.7	735
22	Strategies to determine the biological function of microRNAs. Nature Genetics, 2006, 38, S14-S19.	9.4	234
23	Combinatorial microRNA target predictions. Nature Genetics, 2005, 37, 495-500.	9.4	4,258
24	Apolipoprotein M is required for preÎ ² -HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nature Medicine, 2005, 11, 418-422.	15.2	276
25	A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432, 226-230.	13.7	1,932
26	Shc and CEACAM1 Interact to Regulate the Mitogenic Action of Insulin. Journal of Biological Chemistry, 2002, 277, 1076-1084.	1.6	59
27	Phosphoinositide 3-Kinase Mediates Enhanced Spontaneous and Agonist-Induced Contraction in Aorta of Deoxycorticosterone Acetate-Salt Hypertensive Rats. Circulation Research, 2002, 91, 360-369.	2.0	78
28	CEACAM1 regulates insulin clearance in liver. Nature Genetics, 2002, 30, 270-276.	9.4	229
29	Differences in tissue-specific and embryonic expression of mouse Ceacam1 and Ceacam2 genes. Biochemical Journal, 2001, 355, 417-423.	1.7	37
30	Differences in tissue-specific and embryonic expression of mouse Ceacam1 and Ceacam2 genes. Biochemical Journal, 2001, 355, 417.	1.7	33
31	Comparison of the intracellular trafficking of two alternatively spliced isoforms of pp120, a substrate of the insulin receptor tyrosine kinase. , 2000, 76, 133-142.		6
32	The Differential Effects of pp120 (Ceacam 1) on the Mitogenic Action of Insulin and Insulin-Like Growth Factor 1 Are Regulated by the Nonconserved Tyrosine 1316 in the Insulin Receptor. Molecular and Cellular Biology, 2000, 20, 3896-3905.	1.1	32
33	Effect of pp120 on Receptor-mediated Insulin Endocytosis Is Regulated by the Juxtamembrane Domain of the Insulin Receptor. Journal of Biological Chemistry, 1998, 273, 12923-12928.	1.6	26
34	Insulin Stimulates pp120 Endocytosis in Cells Co-expressing Insulin Receptors. Journal of Biological Chemistry, 1998, 273, 22194-22200.	1.6	37
35	Binding of STAT5a and STAT5b to a Single Element Resembling a Â-Interferon-Activated Sequence Mediates the Growth Hormone Induction of the Mouse Acid-Labile Subunit Promoter in Liver Cells. Molecular Endocrinology, 1998, 12, 675-687.	3.7	30