Steffen Scholpp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4743169/publications.pdf

Version: 2024-02-01

54 papers 3,400 citations

147801 31 h-index 197818 49 g-index

64 all docs

64
docs citations

64 times ranked 4915 citing authors

#	Article	IF	CITATIONS
1	Vertebrate Wnt5a $\hat{a}\in$ " At the crossroads of cellular signalling. Seminars in Cell and Developmental Biology, 2022, 125, 3-10.	5.0	19
2	Vangl2 promotes the formation of long cytonemes to enable distant Wnt/ \hat{l}^2 -catenin signaling. Nature Communications, 2021, 12, 2058.	12.8	42
3	Review: The Role of Wnt/ \hat{l}^2 -Catenin Signalling in Neural Crest Development in Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 782445.	3.7	12
4	Development of the electric organ in embryos and larvae of the knifefish, Brachyhypopomus gauderio. Developmental Biology, 2020, 466, 99-108.	2.0	3
5	Delay-driven oscillations via Axin2 feedback in the Wnt/ <mml:math altimg="si69.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>β</mml:mi></mml:mrow></mml:math> -catenin signalling pathway. Iournal of Theoretical Biology. 2020. 507. 110458.	1.7	7
6	Preserving Cytonemes for Immunocytochemistry of Cultured Adherent Cells. Methods in Molecular Biology, 2020, 2346, 183-190.	0.9	8
7	Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish. Histochemistry and Cell Biology, 2020, 154, 463-480.	1.7	6
8	Modeling of Wnt-mediated tissue patterning in vertebrate embryogenesis. PLoS Computational Biology, 2020, 16, e1007417.	3.2	20
9	Studying molecular interactions in the intact organism: fluorescence correlation spectroscopy in the living zebrafish embryo. Histochemistry and Cell Biology, 2020, 154, 507-519.	1.7	10
10	Introduction: in vivo cell biology in zebrafish. Histochemistry and Cell Biology, 2020, 154, 457-461.	1.7	4
11	Cytonemes in development. Current Opinion in Genetics and Development, 2019, 57, 25-30.	3.3	48
12	Mechanisms of intercellular Wnt transport. Development (Cambridge), 2019, 146, .	2. 5	115
13	Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science, 2018, 360, .	12.6	420
14	The function of endocytosis in Wnt signaling. Cellular and Molecular Life Sciences, 2018, 75, 785-795.	5.4	54
15	Emerging role of contact-mediated cell communication in tissue development and diseases. Histochemistry and Cell Biology, 2018, 150, 431-442.	1.7	60
16	From top to bottom: Cell polarity in Hedgehog and Wnt trafficking. BMC Biology, 2018, 16, 37.	3.8	23
17	Wnt/PCP controls spreading of Wnt/ \hat{l}^2 -catenin signals by cytonemes in vertebrates. ELife, 2018, 7, .	6.0	106
18	Secreted Frizzled-related Protein 2 (sFRP2) Redirects Non-canonical Wnt Signaling from Fz7 to Ror2 during Vertebrate Gastrulation. Journal of Biological Chemistry, 2016, 291, 13730-13742.	3.4	23

#	Article	IF	CITATIONS
19	Dynamic Simulations of Cell Migration with Applications to Brain Development. Biophysical Journal, 2016, 110, 350a.	0.5	0
20	3D Simulations of Morphogen Transport in an Early Fish Embryo. Biophysical Journal, 2016, 110, 141a.	0.5	0
21	Role of cytonemes in Wnt transport. Journal of Cell Science, 2016, 129, 665-72.	2.0	90
22	Filopodia-based Wnt transport during vertebrate tissue patterning. Nature Communications, 2015, 6, 5846.	12.8	206
23	Photolithographic Patterning of 3Dâ€Formed Polycarbonate Films for Targeted Cell Guiding. Advanced Materials, 2015, 27, 2621-2626.	21.0	36
24	Monte Carlo Simulation of Wnt Propagation by a Novel Transport Mechanism Complementing a Joint Experimental Study. Biophysical Journal, 2015, 108, 612a.	0.5	1
25	In-vivo analysis of formation and endocytosis of the Wnt/ \hat{l}^2 -Catenin signaling complex in zebrafish embryos. Journal of Cell Science, 2014, 127, 3970-82.	2.0	61
26	Pax6 regulates the formation of the habenular nuclei by controlling the temporospatial expression of Shhin the diencephalon in vertebrates. BMC Biology, 2014, 12, 13.	3.8	31
27	<i>In vivo</i> analysis of formation and endocytosis of the Wnt/ \hat{l}^2 -Catenin signaling complex in zebrafish embryos. Journal of Cell Science, 2014, 127, 5331-5331.	2.0	9
28	Tyrosine phosphorylation of <scp>LRP</scp> 6 by Src and Fer inhibits Wnt/β atenin signalling. EMBO Reports, 2014, 15, 1254-1267.	4.5	34
29	Endocytosis of Fgf8 Is a Double-Stage Process and Regulates Spreading and Signaling. PLoS ONE, 2014, 9, e86373.	2.5	6
30	In vivo analysis of formation and endocytosis of the Wnt/ \hat{l}^2 -Catenin signaling complex in zebrafish embryos. Development (Cambridge), 2014, 141, e1907-e1907.	2.5	2
31	Neurogenesis in zebrafish – from embryo to adult. Neural Development, 2013, 8, 3.	2.4	252
32	Micropatterned superhydrophobic structures for the simultaneous culture of multiple cell types and the study of cellâ€"cell communication. Biomaterials, 2013, 34, 1757-1763.	11.4	102
33	Building the gateway to consciousness—about the development of the thalamus. Frontiers in Neuroscience, 2013, 7, 94.	2.8	0
34	Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain. Neural Development, 2012, 7, 12.	2.4	37
35	The Tale of the Three Brothers – Shh, Wnt, and Fgf during Development of the Thalamus. Frontiers in Neuroscience, 2012, 6, 76.	2.8	36
36	Lhx2 and Lhx9 Determine Neuronal Differentiation and Compartition in the Caudal Forebrain by Regulating Wnt Signaling. PLoS Biology, 2011, 9, e1001218.	5.6	103

#	Article	IF	CITATIONS
37	Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nature Neuroscience, 2010, 13, 1380-1387.	14.8	106
38	Molecular Pathways Controlling Development of Thalamus and Hypothalamus: From Neural Specification to Circuit Formation. Journal of Neuroscience, 2010, 30, 14925-14930.	3.6	71
39	[P2.69]: The clathrin adaptorâ€protein subunit ap2m1 regulates canonical Wnt signalling in early neural development of the zebrafish. International Journal of Developmental Neuroscience, 2010, 28, 710-711.	1.6	0
40	Building a bridal chamber: development of the thalamus. Trends in Neurosciences, 2010, 33, 373-380.	8.6	105
41	Her6 regulates the neurogenetic gradient and neuronal identity in the thalamus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19895-19900.	7.1	82
42	Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature, 2009, 461, 533-536.	27.8	335
43	Neural Patterning: Midbrain–Hindbrain Boundary. , 2009, , 205-211.		1
44	Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon. Development (Cambridge), 2007, 134, 3167-3176.	2.5	68
45	Early developmental specification of the thyroid gland depends on <i>han </i> expressing surrounding tissue and on FGF signals. Development (Cambridge), 2007, 134, 2871-2879.	2.5	64
46	Pbx proteins cooperate with Engrailed to pattern the midbrainâ€"hindbrain and diencephalicâ€"mesencephalic boundaries. Developmental Biology, 2007, 301, 504-517.	2.0	36
47	Hedgehogs, Fluorescence Imaging & Brain Development. Infocus Magazine, 2007, , 66-75.	0.1	0
48	Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon. Development (Cambridge), 2006, 133, 855-864.	2.5	138
49	Zebrafish fgfr1 is a member of the fgf8 synexpression group and is required for fgf8 signalling at the midbrain-hindbrain boundary. Development Genes and Evolution, 2004, 214, 285-95.	0.9	55
50	Endocytosis Controls Spreading and Effective Signaling Range of Fgf8 Protein. Current Biology, 2004, 14, 1834-1841.	3.9	113
51	Integrity of the midbrain region is required to maintain the diencephalic-mesencephalic boundary in zebrafishno isthmus/pax2.1 mutants. Developmental Dynamics, 2003, 228, 313-322.	1.8	34
52	Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development (Cambridge), 2003, 130, 4881-4893.	2.5	64
53	A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish <i>pax2.1</i> promoter in transgenic lines. Development (Cambridge), 2002, 129, 3227-3239.	2.5	81
54	Morpholino-induced knockdown of zebrafish engrailed geneseng2 andeng3 reveals redundant and unique functions in midbrain-hindbrain boundary development. Genesis, 2001, 30, 129-133.	1.6	43