Karina Dalsgaard SÃ, rensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4742504/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Predictors of Biochemical Recurrence in Prostate Cancer Patients, as Detected by 68Ga-PSMA PET/CT. Diagnostics, 2022, 12, 195.	2.6	5
2	Microbiota of the prostate tumor environment investigated by whole-transcriptome profiling. Genome Medicine, 2022, 14, 9.	8.2	14
3	The transcriptional landscape and biomarker potential of circular RNAs in prostate cancer. Genome Medicine, 2022, 14, 8.	8.2	19
4	Dysbiotic microbes and how to find them: a review of microbiome profiling in prostate cancer. Journal of Experimental and Clinical Cancer Research, 2022, 41, 31.	8.6	8
5	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	3.9	14
6	Independent validation of a pre-specified four-kallikrein marker model for prediction of adverse pathology and biochemical recurrence. British Journal of Cancer, 2022, 126, 1004-1009.	6.4	2
7	FRMD6 has tumor suppressor functions in prostate cancer. Oncogene, 2021, 40, 763-776.	5.9	24
8	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	21.4	264
9	Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 532-541.	3.9	16
10	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	12.8	40
11	High-Throughput and Automated Acoustic Trapping of Extracellular Vesicles to Identify microRNAs With Diagnostic Potential for Prostate Cancer. Frontiers in Oncology, 2021, 11, 631021.	2.8	17
12	A polymorphism in the promoter of FRAS1 is a candidate SNP associated with metastatic prostate cancer. Prostate, 2021, 81, 683-693.	2.3	5
13	Risk stratification in men with a negative prostate biopsy: an interim analysis of a prospective cohort study. BJU International, 2021, 128, 702-712.	2.5	0
14	Immune cell analyses of the tumor microenvironment in prostate cancer highlight infiltrating regulatory <scp>T</scp> cells and macrophages as adverse prognostic factors. Journal of Pathology, 2021, 255, 155-165.	4.5	36
15	⁶⁸ Ga-PSMA PET/CT for Primary Lymph Node and Distant Metastasis NM Staging of High-Risk Prostate Cancer. Journal of Nuclear Medicine, 2021, 62, 214-220.	5.0	64
16	A Nordic initiative for a more personal and accurate diagnostic pathway for prostate cancer. Scandinavian Journal of Primary Health Care, 2020, 38, 249-250.	1.5	2
17	The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	3.7	16
18	Epigenetic Analysis of Circulating Tumor DNA in Localized and Metastatic Prostate Cancer: Evaluation of Clinical Biomarker Potential. Cells, 2020, 9, 1362.	4.1	20

#	Article	IF	CITATIONS
19	FcRn overexpression in human cancer drives albumin recycling and cell growth; a mechanistic basis for exploitation in targeted albumin-drug designs. Journal of Controlled Release, 2020, 322, 53-63.	9.9	29
20	Validation of the four-miRNA biomarker panel MiCaP for prediction of long-term prostate cancer outcome. Scientific Reports, 2020, 10, 10704.	3.3	8
21	The effect of assessing genetic risk of prostate cancer on the use of PSA tests in primary care: A cluster randomized controlled trial. PLoS Medicine, 2020, 17, e1003033.	8.4	6
22	Profiling of Circulating microRNAs in Prostate Cancer Reveals Diagnostic Biomarker Potential. Diagnostics, 2020, 10, 188.	2.6	22
23	A genetic risk assessment for prostate cancer influences patients' risk perception and use of repeat PSA testing: a cross-sectional study in Danish general practice. BJGP Open, 2020, 4, bjgpopen20X101039.	1.8	1
24	Epigenetic silencing of MEIS2 in prostate cancer recurrence. Clinical Epigenetics, 2019, 11, 147.	4.1	20
25	Elevated miR-615-3p Expression Predicts Adverse Clinical Outcome and Promotes Proliferation and Migration of Prostate Cancer Cells. American Journal of Pathology, 2019, 189, 2377-2388.	3.8	16
26	Epigenetics of Urological Cancers. International Journal of Molecular Sciences, 2019, 20, 4775.	4.1	7
27	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88
28	A novel combined miRNA and methylation marker panel (miMe) for prediction of prostate cancer outcome after radical prostatectomy. International Journal of Cancer, 2019, 145, 3445-3452.	5.1	12
29	A fiveâ€microRNA model (<i>pCaP</i>) for predicting prostate cancer aggressiveness using cellâ€free urine. International Journal of Cancer, 2019, 145, 2558-2567.	5.1	36
30	5hmC Level Predicts Biochemical Failure Following Radical Prostatectomy in Prostate Cancer Patients with ERG Negative Tumors. International Journal of Molecular Sciences, 2019, 20, 1025.	4.1	4
31	Aberrant DOCK2, GRASP, HIF3A and PKFP Hypermethylation has Potential as a Prognostic Biomarker for Prostate Cancer. International Journal of Molecular Sciences, 2019, 20, 1173.	4.1	28
32	Independent Validation of a Diagnostic Noninvasive 3-MicroRNA Ratio Model (uCaP) for Prostate Cancer in Cell-Free Urine. Clinical Chemistry, 2019, 65, 540-548.	3.2	20
33	Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 208-216.	2.5	21
34	Biomarker potential of <i><scp>ST</scp>6<scp>GALNAC</scp>3</i> and <i><scp>ZNF</scp>660</i> promoter hypermethylation in prostate cancer tissue and liquid biopsies. Molecular Oncology, 2018, 12, 545-560.	4.6	49
35	Diagnostic and Prognostic MicroRNA Biomarkers for Prostate Cancer in Cell-free Urine. European Urology Focus, 2018, 4, 825-833.	3.1	86
36	Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. British Journal of Cancer, 2018, 119, 1527-1537.	6.4	10

#	Article	IF	CITATIONS
37	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	12.8	43
38	Picomolar sensitive and SNP-selective "Off-On―hairpin genosensor based on structure-tunable redox indicator signals. Biosensors and Bioelectronics, 2018, 117, 444-449.	10.1	11
39	Training and validation of a novel 4-miRNA ratio model (MiCaP) for prediction of postoperative outcome in prostate cancer patients. Annals of Oncology, 2018, 29, 2003-2009.	1.2	29
40	Perceptions about screening for prostate cancer using genetic lifetime risk assessment: a qualitative study. BMC Family Practice, 2018, 19, 32.	2.9	5
41	Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Clinical Epigenetics, 2018, 10, 105.	4.1	36
42	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	21.4	652
43	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	12.8	88
44	Identifying aggressive prostate cancer foci using a DNA methylation classifier. Genome Biology, 2017, 18, 3.	8.8	43
45	Heterogeneous patterns of DNA methylation-based field effects in histologically normal prostate tissue from cancer patients. Scientific Reports, 2017, 7, 40636.	3.3	35
46	miRNAs associated with prostate cancer risk and progression. BMC Urology, 2017, 17, 18.	1.4	79
47	An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. Cell Systems, 2017, 4, 587-599.e4.	6.2	413
48	epiG: statistical inference and profiling of DNA methylation from whole-genome bisulfite sequencing data. Genome Biology, 2017, 18, 38.	8.8	6
49	RHCG and TCAF1 promoter hypermethylation predicts biochemical recurrence in prostate cancer patients treated by radical prostatectomy. Oncotarget, 2017, 8, 5774-5788.	1.8	22
50	Comprehensive Evaluation of TFF3 Promoter Hypomethylation and Molecular Biomarker Potential for Prostate Cancer Diagnosis and Prognosis. International Journal of Molecular Sciences, 2017, 18, 2017.	4.1	20
51	Bivalent Regions of Cytosine Methylation and H3K27 Acetylation Suggest an Active Role for DNA Methylation at Enhancers. Molecular Cell, 2016, 62, 422-431.	9.7	106
52	Prevalence of the <i>HOXB13</i> G84E mutation in Danish men undergoing radical prostatectomy and its correlations with prostate cancer risk and aggressiveness. BJU International, 2016, 118, 646-653.	2.5	31
53	The Potential of MicroRNAs as Prostate Cancer Biomarkers. European Urology, 2016, 70, 312-322.	1.9	243
54	Largeâ€scale evaluation of SLC18A2 in prostate cancer reveals diagnostic and prognostic biomarker potential at three molecular levels. Molecular Oncology, 2016, 10, 825-837.	4.6	20

#	Article	IF	CITATIONS
55	PINCAGE: probabilistic integration of cancer genomics data for perturbed gene identification and sample classification. Bioinformatics, 2016, 32, 1353-1365.	4.1	12
56	<i>HNF1B</i> variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer. Oncotarget, 2016, 7, 74734-74746.	1.8	38
57	Novel diagnostic and prognostic classifiers for prostate cancer identified by genome-wide microRNA profiling. Oncotarget, 2016, 7, 30760-30771.	1.8	70
58	Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Scientific Reports, 2015, 5, 16018.	3.3	108
59	High levels of 5-hydroxymethylcytosine (5hmC) is an adverse predictor of biochemical recurrence after prostatectomy in ERG-negative prostate cancer. Clinical Epigenetics, 2015, 7, 111.	4.1	26
60	SMAP: a streamlined methylation analysis pipeline for bisulfite sequencing. GigaScience, 2015, 4, 29.	6.4	13
61	Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1121-1129.	2.5	56
62	BS-SNPer: SNP calling in bisulfite-seq data. Bioinformatics, 2015, 31, 4006-4008.	4.1	61
63	Next-Generation Sequencing of RNA and DNA Isolated from Paired Fresh-Frozen and Formalin-Fixed Paraffin-Embedded Samples of Human Cancer and Normal Tissue. PLoS ONE, 2014, 9, e98187.	2.5	284
64	Prognostic DNA Methylation Markers for Prostate Cancer. International Journal of Molecular Sciences, 2014, 15, 16544-16576.	4.1	90
65	Profiling of circulating microRNAs for prostate cancer biomarker discovery. Drug Delivery and Translational Research, 2014, 4, 19-30.	5.8	84
66	Hypermethylation of the <i>GABREâ^¼miR-452â^¼miR-224</i> Promoter in Prostate Cancer Predicts Biochemical Recurrence after Radical Prostatectomy. Clinical Cancer Research, 2014, 20, 2169-2181.	7.0	86
67	A Dual Program for Translation Regulation in Cellular Proliferation and Differentiation. Cell, 2014, 158, 1281-1292.	28.9	414
68	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	2.9	118
69	DNA Methylation Signatures for Prediction of Biochemical Recurrence After Radical Prostatectomy of Clinically Localized Prostate Cancer. Journal of Clinical Oncology, 2013, 31, 3250-3258.	1.6	117
70	Research Highlights: New insights into prostate cancer susceptibility. Personalized Medicine, 2013, 10, 427-430.	1.5	0
71	Research Highlights: The search for better prostate cancer biomarkers continues. Personalized Medicine, 2012, 9, 471-474.	1.5	0
72	Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nature Genetics, 2011, 43, 785-791.	21.4	265

#	Article	IF	CITATIONS
73	Promoter hypomethylation and upregulation of trefoil factors in prostate cancer. International Journal of Cancer, 2010, 127, 1857-1865.	5.1	48
74	Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Review of Molecular Diagnostics, 2010, 10, 49-64.	3.1	60
75	Genetic and Epigenetic <i>SLC18A2</i> Silencing in Prostate Cancer Is an Independent Adverse Predictor of Biochemical Recurrence after Radical Prostatectomy. Clinical Cancer Research, 2009, 15, 1400-1410.	7.0	26
76	Chromosomal deletion, promoter hypermethylation and downregulation of <i>FYN</i> in prostate cancer. International Journal of Cancer, 2008, 122, 509-519.	5.1	22
77	Ethical Principles in the Analysis of Prostate Cancer Diagnostics. Cancer Investigation, 0, , 1-15.	1.3	0