Petr Valasek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4742060/publications.pdf

Version: 2024-02-01

		471509	477307
86	1,012	17	29
papers	citations	h-index	g-index
90	90	90	716
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The effect of sandblasting on surface properties for adhesion. International Journal of Adhesion and Adhesives, 2016, 70, 176-190.	2.9	112
2	Tribological characterization of vegetal lubricants: Comparative experimental investigation on Jatropha curcas L. oil, Rapeseed Methyl Ester oil, Hydrotreated Rapeseed oil. Tribology International, 2017, 109, 529-540.	5.9	85
3	Exploitation of waste date seeds of Phoenix dactylifera in form of polymeric particle biocomposite: Investigation on adhesion, cohesion and wear. Composites Part B: Engineering, 2016, 104, 9-16.	12.0	55
4	Mechanical properties and abrasive wear of white/brown coir epoxy composites. Composites Part B: Engineering, 2018, 146, 88-97.	12.0	51
5	Experimental description of strength and tribological characteristic of EFB oil palm fibres/epoxy composites with technologically undemanding preparation. Composites Part B: Engineering, 2017, 122, 79-88.	12.0	45
6	Abrasive wear effect on Polyethylene, Polyamide 6 and polymeric particle composites. Manufacturing Technology, 2012, 12, 55-59.	1.4	43
7	Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers. Materials, 2021, 14, 2636.	2.9	42
8	The Influence of Modification with Natural Fillers on the Mechanical Properties of Epoxy Adhesive Compositions after Storage Time. Materials, 2020, 13, 291.	2.9	36
9	Tribology of Natural Fibers Composite Materials: An Overview. Lubricants, 2020, 8, 42.	2.9	35
10	Mechanical properties of adhesive bonds reinforced with biological fabric. Journal of Adhesion Science and Technology, 2017, 31, 1859-1871.	2.6	27
11	Bio-Pellet Fuel from Oil Palm Empty Fruit Bunches (EFB): Using European Standards for Quality Testing. Sustainability, 2018, 10, 4443.	3.2	27
12	On the Tribological Performance of Vegetal Lubricants: Experimental Investigation on Jatropha Curcas L. oil. Procedia Engineering, 2016, 149, 431-437.	1.2	26
13	Friction and Wear Behaviors of Al/Epoxy Composites during Reciprocating Sliding Tests. Manufacturing Technology, 2015, 15, 684-689.	1.4	25
14	Influence of Plasma Treatment on Mechanical Properties of Cellulose-based Fibres and Their Interfacial Interaction in Composite Systems. BioResources, 2017, 12, .	1.0	22
15	Effect of active rubber powder on structural two-component epoxy resin and its mechanical properties. Journal of Adhesion Science and Technology, 2018, 32, 1531-1547.	2.6	22
16	Thermoset Composite on Basis of Recycled Rubber. Advanced Materials Research, 0, 801, 67-73.	0.3	21
17	Abrasive wear in three-phase waste-based polymeric particle composites. Tehnicki Vjesnik, 2015, 22, 257-262.	0.2	20
18	Strength Characteristics of Untreated Short-fibre Composites from the Plant Ensete ventricosum. BioResources, 2016, 12, .	1.0	17

#	Article	IF	CITATIONS
19	Mechanical Properties of Epoxy Resins Filled with Waste Rubber Powder. Manufacturing Technology, 2014, 14, 632-637.	1.4	17
20	Material Utilization of Cotton Post-Harvest Line Residues in Polymeric Composites. Polymers, 2019, 11, 1106.	4.5	16
21	Tribological investigation of epoxy/seed particle composite obtained from residues of processing Jatropha Curcas L. fruits. Composites Part B: Engineering, 2019, 167, 654-667.	12.0	16
22	Comparison of variables influence on adhesive bonds strength calculations. Manufacturing Technology, 2013, 13, 205-210.	1.4	16
23	Polymeric composite based on glass powder – usage possibilities in agrocomplex. Scientia Agriculturae Bohemica, 2013, 44, 107-112.	0.3	16
24	Polyurethane resins filled with inorganic waste particles. Manufacturing Technology, 2013, 13, 241-247.	1.4	13
25	Characterization of vegetable oil as cutting fluid. Procedia Manufacturing, 2019, 41, 145-152.	1.9	11
26	Degradation Process in Area of Connecting Metal Sheets by Adhesive Bonding Technology in Agrocomplex. Applied Mechanics and Materials, 0, 616, 52-60.	0.2	10
27	Long-Term Degradation of Composites Exposed to Liquid Environments in Agriculture. Scientia Agriculturae Bohemica, 2014, 45, 187-192.	0.3	10
28	Recycling of corundum particles - two-body abrasive wear of polymeric composites based on waste. Tehnicki Vjesnik, 2015, 22, 567-572.	0.2	10
29	Analytical fluid film force calculation in the case of short bearing with a fully developed turbulent flow. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 395-401.	1.8	10
30	Composite based on hard-cast irons utilized on functional areas of tools in agrocomplex. Scientia Agriculturae Bohemica, 2013, 44, 172-177.	0.3	10
31	Quasi-Static Tests of Hybrid Adhesive Bonds Based on Biological Reinforcement in the Form of Eggshell Microparticles. Polymers, 2020, 12, 1391.	4.5	9
32	Effect of Fiber Orientation on the Tribological Performance of Abaca-Reinforced Epoxy Composite under Dry Contact Conditions. Journal of Composites Science, 2022, 6, 204.	3.0	9
33	Mechanical Characterisation of Metal/Polymeric Composite Waste/Metal Sandwich Panel. Manufacturing Technology, 2017, 17, 530-536.	1.4	8
34	Composite adhesive bonds reinforced with microparticle filler based on egg shell waste. Journal of Physics: Conference Series, 2018, 1016, 012002.	0.4	7
35	Musa textilis Cellulose Fibres in Biocomposites $\hat{a} \in \text{``An Investigation of Mechanical Properties and Microstructure. BioResources, 2018, 13, .}$	1.0	7
36	Short Sisal Fibers Reinforced Epoxy Resins: Tensile Strength. Manufacturing Technology, 2016, 16, 637-641.	1.4	7

#	Article	IF	CITATIONS
37	Experimental verification of small diameter rollers utilization in construction of roller test stand in evaluation of energy loss due to rolling resistance. Measurement: Journal of the International Measurement Confederation, 2020, 152, 107287.	5.0	6
38	Research on Aluminium Alloy AlCu4Mg Surface Machined by Abrasive Water Jet. Manufacturing Technology, 2017, 17, 925-930.	1.4	6
39	Exploitation of Hazelnut (Corylus avellana) Shell Waste in the Form of Polymer–Particle Biocomposite. Scientia Agriculturae Bohemica, 2018, 49, 53-59.	0.3	6
40	Using Recycled Rubber Particles as Filler of Polymers. Applied Mechanics and Materials, 2014, 616, 260-267.	0.2	5
41	Possibilities of Adhesives Filling With Micro-particle Fillers - Lap-shear Tensile Strength. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2016, 64, 195-201.	0.4	5
42	Research on Application of Technology Using Water Jet on Machining of Polymeric Composite Biological-Reinforced Materials. Manufacturing Technology, 2018, 18, 630-634.	1.4	5
43	Picture Analysis of Failure Areas of Particle Composites. Manufacturing Technology, 2014, 14, 474-478.	1.4	5
44	Reliability and risk treatment centered maintenance. Journal of Mechanical Science and Technology, 2014, 28, 3963-3970.	1.5	4
45	Influence of Glass Powder Size Sorting on Properties of Composite Systems. Scientia Agriculturae Bohemica, 2016, 47, 25-31.	0.3	4
46	MECHANICAL PROPERTIES OF POLYMER COMPOSITES BASED ON BIOPARTICLES (JATROPHA CURCAS L.). Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	3
47	Research on Influence of Loading Speed of Structural Two-component Epoxy Adhesives on Adhesive Bond Strength. Procedia Engineering, 2016, 149, 340-345.	1.2	3
48	Research on water jet cutting of composites based on epoxy/microparticles from coconut shell. MATEC Web of Conferences, 2018, 244, 02001.	0.2	3
49	Nano Particles as Lubricant Additive: A Concise Review. Lecture Notes in Mechanical Engineering, 2021, , 392-403.	0.4	3
50	Properties of Adhesives Used for Connecting in Automotive Industry. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2015, 63, 463-470.	0.4	3
51	Biocomposite Based on Epoxy Resin and <i>Jatropha curcas</i> L. Microparticles. Advanced Materials Research, 2014, 1030-1032, 446-449.	0.3	2
52	Effect of Biofuels on Quality of Engine Oil. Advanced Materials Research, 0, 1030-1032, 414-417.	0.3	2
53	Influence of Environment Temperature on Strength of Quick-Setting Adhesives Based on Cyanoacrylates. Advanced Materials Research, 0, 1030-1032, 272-275.	0.3	2
54	Adhesive properties and adhesive joints strength of graphite/epoxy composites. Journal of Physics: Conference Series, 2017, 842, 012073.	0.4	2

#	Article	IF	Citations
55	Quasi-static tests on polyurethane adhesive bonds reinforced by rubber powder., 2019,,.		2
56	Effect of Waterjet Machining Parameters on Cut Quality of Polymeric Composite Materials Based on Biological Reinforcement in Form of Cotton Post-harvest Line Residues. Manufacturing Technology, 2019, 19, 647-654.	1.4	2
57	Notice of Retraction Reliability and risk treatment centred maintenance. , 2013, , .		1
58	Notice of Retraction Degradation process influencing safety of constructional adhesive bonds. , 2013, , .		1
59	Mixture of Oil and Diesel as Fuel for Internal Combustion Engine. Advanced Materials Research, 0, 1030-1032, 1197-1200.	0.3	1
60	Compacting Technologies of Polyethyleneterephtalate Bottle. Key Engineering Materials, 0, 669, 29-35.	0.4	1
61	Dynamics of Treatment Device for Die Casting of Metals. Key Engineering Materials, 2015, 669, 327-334.	0.4	1
62	Impact Strength of Filled Polymer Materials. Materials Science Forum, 2017, 883, 46-50.	0.3	1
63	Degradation of strength properties of epoxy resin filled with natural-based particles. Journal of Physics: Conference Series, 2018, 1016, 012003.	0.4	1
64	Investigation on Polymer Composite Materials Wear Reinforced by Microparticles of Jatropha Curcas L. Waste. IOP Conference Series: Materials Science and Engineering, 2019, 638, 012011.	0.6	1
65	Dimensional Characterization of Prosthesis Bearings for Tribological Modelling. Lecture Notes in Mechanical Engineering, 2019, , 195-204.	0.4	1
66	The Effect of Aging on the Decrease in Tensile Strength of Composites with Palm Oil Kernel Shell Powder. Solid State Phenomena, 2020, 305, 18-22.	0.3	1
67	Influence of Glass Fibre Fabrics/Epoxy Hybrid Adhesive Layer on Mechanical Properties of Adhesive Bond. Lecture Notes in Electrical Engineering, 2019, , 554-560.	0.4	1
68	Abrasion of Polymeric Composites on Basis of Machining Splinters from Hardfacing Alloys - Usable in Agrocomplex. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2014, 62, 261-266.	0.4	1
69	Material Usage of Oil-Palm Empty Fruit Bunch (EFB) in Polymer Composite Systems. Manufacturing Technology, 2018, 18, 686-691.	1.4	1
70	Applications of Microscopy in Experimental Description of Glass Powder/Epoxy Systems. Manufacturing Technology, 2016, 16, 1183-1188.	1.4	1
71	THE INFLUENCE OF SELECTED FACTORS ON THE STRENGHT OF WOOD ADHESIVE JOINTS. Advances in Science and Technology Research Journal, 2018, 12, 47-54.	0.8	1
72	The Bending Properties of Sandwich Materials with Polyurethane Core. Advanced Materials Research, 2014, 1030-1032, 1019-1022.	0.3	0

#	Article	IF	Citations
73	Utilization of Satellite Monitoring for Maintenance Decision Making. Advanced Materials Research, 2014, 1030-1032, 1864-1867.	0.3	0
74	Influence of the Hardener Proportion on Mechanical Properties of Adhesive Bonds Used in Agriculture. Scientia Agriculturae Bohemica, 2015, 45, 265-270.	0.3	0
7 5	Influence of two-body abrasion and heat intensity on metal and non-metal materials used in agriculture. Research in Agricultural Engineering, 2015, 61, 40-46.	1.0	0
76	Microparticle composites on the basis of scrap utilizable in the field of agricultural production. Research in Agricultural Engineering, 2015, 61, 92-97.	1.0	0
77	Material utilization of waste originating during processing of plant Jatropha curcas L. In biocomposites – adhesive-cohesive characteristics and wear. Tehnicki Vjesnik, 2016, 23, .	0.2	0
78	Optimization of Adhesive Bonds with Particle Fillers. Materials Science Forum, 0, 883, 70-74.	0.3	0
79	Tensile Strength of Sisal/Epoxy Composites Prepared by Vacuum Infusion. Materials Science Forum, 0, 911, 95-99.	0.3	0
80	Experimental Description of Aging of Coconut Shell Powder/Epoxy Composite. Solid State Phenomena, 2019, 287, 64-68.	0.3	0
81	Experimental description of aging of palm oil kernel shell powder/epoxy composite. IOP Conference Series: Materials Science and Engineering, 2019, 617, 012009.	0.6	0
82	Research on Water Jet Cutting of Polymer Composites Based on Epoxy/Waste Fibres from Coconut Processing. Lecture Notes in Mechanical Engineering, 2019, , 45-53.	0.4	0
83	Research of Quasi-static Tests and Static Loading on Hybrid Adhesive Bonds. Lecture Notes in Mechanical Engineering, 2022, , 147-154.	0.4	0
84	THE INFLUENCE BREEDING ON THE MECHANICAL PROPERTIES OF THE HOOF HORN IN CZECH WARMBLOOD HORSES., 2015,,.		0
85	ADHESIVE BOND OF CARBON STEEL S235J0: EFFECTS OF ALUMINIUM AND POLYMER POWDER FILLED EPOXY ADHESIVES ON MECHANICAL PROPERTIES. Advances in Science and Technology Research Journal, 2016, 10, 87-93.	0.8	0
86	Experimental characterization of degradation of reactive resin filled with organic microparticles., $2017, \dots$		0