Othon C Winter

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/4741933/publications.pdf
Version: 2024-02-01

On the stability of additional moons orbiting Kepler-1625 b. Monthly Notices of the Royal
Astronomical Society, 2022, 510, 2583-2596.

The fate of particles in the dynamical environment around Kuiper-Belt object (486958) Arrokoth. Astrophysics and Space Science, 2022, 367, 1.

Milliarcsecond Astrometry for the Galilean Moons Using Stellar Occultations. Astronomical Journal, 2022, 163, 240.

2001 SN263 â€" the contribution of their irregular shapes on the neighbourhood dynamics. Monthly Notices of the Royal Astronomical Society, 2022, 515, 606-616.

Gravitational perturbations correlated with the asteroid kinetic impact deflection technique.
Scientific Reports, 2022, 12, .

Stability and Evolution of Fallen Particles Around the Surface of Asteroid (101955) Bennu. Journal of
Geophysical Research E: Planets, 2021, 126, .

A computational approach to the powered Swing-By in the elliptic restricted problem. Journal of the
A computational approach to the powered Swing-By in the elliptic restri
Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.
1.6

Formation of Earth-sized planets within the Kepler-1647 system habitable zone. Monthly Notices of the Royal Astronomical Society, 2021, 504, 6144-6156.

Quasi circular orbits around prolate bodies. Monthly Notices of the Royal Astronomical Society,
2021, 506, 3068-3078.

Refined physical parameters for Charikloâ $€^{T M}$ s body and rings from stellar occultations observed
between 2013 and 2020. Astronomy and Astrophysics, 2021, 652, A141.

APOPHIS â€" effects of the 2029 Earthâ $€^{T M}$ s encounter on the surface and nearby dynamics. Monthly Notices
of the Royal Astronomical Society, 2021, 510, 95-109.

Dynamics around non-spherical symmetric bodies â€"I. The case of a spherical body with mass anomaly.
Monthly Notices of the Royal Astronomical Society, 2021, 510, 1450-1469.

Dynamics around the binary system (65803) Didymos. Proceedings of the International Astronomical
Union, 2021, 15, 197-202.

A mathematical study of the tethered slingshot maneuver using the elliptic restricted problem.
Nonlinear Dynamics, 2020, 102, 1585-1609.

Surface dynamics, equilibrium points and individual lobes of the Kuiper Belt object (486958) Arrokoth.
Monthly Notices of the Royal Astronomical Society, 2020, 496, 4154-4173.

On the rotational motion of NEAs during close encounters with the Earth. European Physical
Journal: Special Topics, 2020, 229, 1391-1403.

An unaccounted component on the Prometheus and Pandora offset angular positions. European
Physical Journal: Special Topics, 2020, 229, 1479-1489.

The structure of the co-orbital stable regions as a function of the mass ratio. Monthly Notices of the
Royal Astronomical Society, 2020, 496, 3700-3707.

Astronomy and Astrophysics, 2019, 626, L4.
First stellar occultation by the Galilean moon Europa and upcoming events between 2019 and 2021.

Sun-synchronous solar reflector orbits designed to warm Mars. Astrophysics and Space Science, 2019,
364, 1.

The PDSâ€\%o110 observing campaign â€" photometric and spectroscopic observations reveal eclipses are aperiodic. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1614-1625.

On the location of the ring around the dwarf planet Haumea. Monthly Notices of the Royal
Astronomical Society, 2019, 484, 3765-3771.

A General Method for Transforming Nonphysical Configurations in BPS States. Advances in High
Energy Physics, 2019, 2019, 1-11.

XIX Brazilian Colloquium on Orbital Dynamics (2018): a solid path to the 21st century. Journal of
29 Physics: Conference Series, 2019, 1365, 011001.

Effects of the mass parameter in the optimum direction of impulse and energy variation in a Powered Swing-By. Journal of Physics: Conference Series, 2019, 1365, 012008.

Errors of Powered Swing-By in the Restricted Three-Body Problem. Journal of Guidance, Control, and Dynamics, 2019, 42, 2246-2257.

APPROX â " $^{\prime}$ mutual approximations between the Galilean moons: the 2016ấ "2018 observational campaign. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5190-5200.

The journey of Typhon-Echidna as a binary system through the planetary region. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5323-5331.

Particles Co-orbital to Janus and to Epimetheus: A Firefly Planetary Ring. Astrophysical Journal, 2018, 852, 14.

PoincarÃ@ surfaces of section around a 3D irregular body: the case of asteroid 4179 Toutatis. Monthly
Notices of the Royal Astronomical Society, 2018, 474, 2452-2466.
4.4

Analytical study of the swing-by maneuver in an elliptical system. Astrophysics and Space Science, 2018,
363, 1.
Comparison between Laplace-Lagrange secular theory and numerical simulation: the case of
\$ \$upsilon \$\$ İ.. Andromedae planetary system. Computational and Applied Mathematics, 2018, 37, 122-132. 1.3

39 The When and Where of Water in the History of the Universe. , 2018, , 47-73. 1

40 Planar powered Swing-By maneuvers to brake a spacecraft. Computational and Applied Mathematics,
Celestial mechanics, spacecrafts, and 50th years of the first humans on the Moon. Computational and
Applied Mathematics, 2018, 37, 1-6.
45 Effects of the eccentricity of the primaries in powered Swing-By maneuvers. Advances in Space

Research, 2017, 59, 2071-2087. | Mapping stable direct and retrograde orbits around the triple system of asteroids (45) Eugenia. |
| :--- |
| 46 Monthly Notices of the Royal Astronomical Society, 2017, 472, 3999-4006. |

57 Analysis of the orbital evolution of exoplanets. Computational and Applied Mathematics, 2016, 35, 847-863.
Celestial Mechanics: from the bases of the past to the challenges of the future. Journal of Physics:
Conference Series, 2015, 641, 011001.

75 Formation of the Janus-Epimetheus system through collisions. Astronomy and Astrophysics, 2015, 583,
A80.

3D stability orbits close to 433 Eros using an effective polyhedral model method. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2672-2682.

```
79 A peculiar stable region around Pluto. Monthly Notices of the Royal Astronomical Society, 2014, 439,
3300-3307.
```

```
81 Alternative transfer to the Earthâ€"Moon Lagrangian points L4 and L5 using lunar gravity assist.
Advances in Space Research, 2014, 53, 543-557.
```

Near-Earth asteroid binaries in close encounters with the Earth. Astronomy and Astrophysics, 2014,
566, A23.
5.1

3

84 Powered Swing-By in the Elliptic Restricted Problem. , 2014, , .

Irregular satellites of Jupiter: three-dimensional study of binary-asteroid captures. Monthly Notices
Exploring sensitive dependence and transitivity to optimize travel time in chaotic systems. Journal of
Physics: Conference Series, 2013, 465, 012018.

Powered Swing-By Maneuvers around the Moon. Journal of Physics: Conference Series, 2013, 465,
Three-body problem, its Lagrangian points and how to exploit them using an alternative transfer to L4

and L5. Celestial Mechanics and Dynamical Astronomy, 2012, 114, 201-213. \quad| Stability regions around the components of the triple system 2001 SN263. Monthly Notices of the |
| :---: |
| Royal Astronomical Society, 2012, 423, 3058-3073. |$\quad 1.4$

101 The Aster project: Flight to a near-Earth asteroid. Cosmic Research, 2010, 48, 443-450. 0.6 40
Distribution of refractory and volatile elements in CoRoT exoplanet host stars. Astronomy and5.111Astrophysics, 2010, 517, A40.
. $1 \quad 9$

Short Lyapunov time: a method for identifying confined chaos. Astronomy and Astrophysics, 2010, 523,
5.1

9
A67.

Extended class of exact twistons and crystalline polyethylene. Journal of Physics A: Mathematical and
2.1

3
Theoretical, 2010, 43, 365402.

Alternative Transfers to the NEOs 99942 Apophis, 1994 WR12, and 2007 UW1 via Derived Trajectories
from Periodic Orbits of Family G. Mathematical Problems in Engineering, 2009, 2009, 1-12.
1.1

3
109 Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G. 1.4
6 Celestial Mechanics and Dynamical Astronomy, 2009, 103, 281-299.

6
Dynamical evolution of Saturn's F ring dust particles. Monthly Notices of the Royal Astronomical
111 On the stability of the satellites of asteroid 87 Sylvia. Monthly Notices of the Royal Astronomical Society, 2009, 395, 218-227.
Distribution of refractory and volatile elements in CoRoT planet host stars. Proceedings of the
116 On the Evection Resonance and Its Connection to the Stability of Outer Satellites. MathematicalProblems in Engineering, 2008, 2008, 1-16.
117 Peculiar trajectories around the Lagrangian equilateral points. Physica D: Nonlinear Phenomena, 2007, 225, 112-118.
118 A possible stellar metallic enhancement in post-T Tauri stars by a planetesimal bombardment. Monthly 4.4 2
Notices of the Royal Astronomical Society, 2007, 378, 1418-1426.
119 Moonlets wandering on a leash-ring. Monthly Notices of the Royal Astronomical Society: Letters,
2007, 380, L54-L57. 18Irregular Satellites of Jupiter: a study of the capture direction. Earth, Moon and Planets, 2007, 100,
$0.6 \quad 5$
233-239. 120 233-239.Alternative paths for insertion of probes into high inclination lunar orbits. Advances in SpaceResearch, 2007, 40, 58-68.Numerical study about natural escape and capture routes by the Moon via Lagrangian points L1 and L2.

$$
\begin{aligned}
& 127 \text { Numerical study of low-cost alternative orbits around the Moon. Advances in Space Research, 2005, } \\
& 36,552-560 .
\end{aligned}
$$

Possibility of collision between co-orbital asteroids and the Earth. Computational and Applied Mathematics, 2005, 24, .

Debris perturbed by radiation pressure: relative velocities across circular orbits. Advances in Space Research, 2004, 34, 1177-1180.

130 Collisions with the Earth: the Moonâ€ $€^{T M}$ s contribution. Advances in Space Research, 2004, 33, 1534-1538.
2.6

Some comments on the F ring-Prometheusâ€"Pandora environment. Advances in Space Research, 2004, 33,
2298-2302.

A note on the horseshoe confinement model: The Poynting-Robertson effect. Astronomy and
Astrophysics, 2004, 418, 759-764.

The effect of Jupiter's mass growth on satellite capture. Astronomy and Astrophysics, 2004, 414,
727-734.

Orbital maneuvers using gravitational capture times. Advances in Space Research, 2003, 31, 2005-2010.

135 On the orbits of the outer satellites of Jupiter. Astronomy and Astrophysics, 2003, 401, 763-772.
5.1

40

Distant stable direct orbits around the Moon. Astronomy and Astrophysics, 2002, 393, 661-671.
5.1

11

Time Analysis for Temporary Gravitational Capture: Satellites of Uranus. Astronomical Journal, 2001,
122, 440-448.

138 Time analysis for temporary gravitational capture. Astronomy and Astrophysics, 2001, 377, 1119-1127.
5.1

18

The stability evolution of a family of simply periodic lunar orbits. Planetary and Space Science, 2000,
48, 23-28.

1402060 Chiron back to a minimum of brightness. Planetary and Space Science, 1996, 44, 1547-1550.
1.7

11

141 The Liapunov Exponent as a Tool for Exploring Phase Space. , 1996, , 215-219.
1

142 Project Criss-Cross: A Preliminary Analysis. NATO ASI Series Series B: Physics, 1995, , 193-198.
0.2

Nebular drag and capture into spin-orbit resonance. Celestial Mechanics and Dynamical Astronomy,
1993, 57, 329-339.

Dynamical Environment and Surface Characteristics of Asteroid (16) Psyche. Monthly Notices of the
Royal Astronomical Society, 0, , .

The main perturbing objects on the orbits of (616) Prometheus and (617) Pandora. Monthly Notices of the Royal Astronomical Society, 0, , .

