
Othon C Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4741933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stable satellites around extrasolar giant planets. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1227-1234.	4.4	179
2	TERRESTRIAL PLANET FORMATION IN A PROTOPLANETARY DISK WITH A LOCAL MASS DEPLETION: A SUCCESSFUL SCENARIO FOR THE FORMATION OF MARS. Astrophysical Journal, 2014, 782, 31.	4.5	98
3	Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3620-3635.	4.4	94
4	A COMPOUND MODEL FOR THE ORIGIN OF EARTH'S WATER. Astrophysical Journal, 2013, 767, 54.	4.5	81
5	THE ASTEROID BELT AS A RELIC FROM A CHAOTIC EARLY SOLAR SYSTEM. Astrophysical Journal, 2016, 833, 40.	4.5	62
6	THE RINGS OF CHARIKLO UNDER CLOSE ENCOUNTERS WITH THE GIANT PLANETS. Astrophysical Journal, 2016, 824, 80.	4.5	44
7	Formation of terrestrial planets in disks with different surface density profiles. Celestial Mechanics and Dynamical Astronomy, 2016, 124, 235-268.	1.4	42
8	On the orbits of the outer satellites of Jupiter. Astronomy and Astrophysics, 2003, 401, 763-772.	5.1	40
9	The Aster project: Flight to a near-Earth asteroid. Cosmic Research, 2010, 48, 443-450.	0.6	40
10	The stability evolution of a family of simply periodic lunar orbits. Planetary and Space Science, 2000, 48, 23-28.	1.7	36
11	Time Analysis for Temporary Gravitational Capture: Satellites of Uranus. Astronomical Journal, 2001, 122, 440-448.	4.7	35
12	Exoplanets in binary star systems: on the switch from prograde to retrograde orbits. Celestial Mechanics and Dynamical Astronomy, 2016, 124, 73-96.	1.4	35
13	Sphere of influence and gravitational capture radius: a dynamical approach. Monthly Notices of the Royal Astronomical Society, 2008, 391, 675-684.	4.4	34
14	Irregular satellites of Jupiter: capture configurations of binary-asteroids. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1999-2008.	4.4	34
15	3D plausible orbital stability close to asteroid (216) Kleopatra. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1316-1327.	4.4	34
16	Stability regions around the components of the triple system 2001 SN263. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3058-3073.	4.4	30
17	3D stability orbits close to 433 Eros using an effective polyhedral model method. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2672-2682.	4.4	30
18	Irregular satellites of Jupiter: three-dimensional study of binary-asteroid captures. Monthly Notices of the Royal Astronomical Society, 2013, 433, 36-46.	4.4	26

#	Article	IF	CITATIONS
19	A numerical study of powered Swing-Bys around the Moon. Advances in Space Research, 2015, 56, 252-272.	2.6	24
20	Effects of the eccentricity of the primaries in powered Swing-By maneuvers. Advances in Space Research, 2017, 59, 2071-2087.	2.6	23
21	Particles Co-orbital to Janus and to Epimetheus: A Firefly Planetary Ring. Astrophysical Journal, 2018, 852, 14.	4.5	23
22	A numerical mapping of energy gains in a powered Swing-By maneuver. Nonlinear Dynamics, 2017, 89, 791-818.	5.2	21
23	The asteroid belt outer region under jumping-Jupiter migration. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2680-2686.	4.4	21
24	On the stability of the satellites of asteroid 87 Sylvia. Monthly Notices of the Royal Astronomical Society, 2009, 395, 218-227.	4.4	19
25	Stable regions around Pluto. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1892-1900.	4.4	19
26	Moonlets wandering on a leash-ring. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 380, L54-L57.	3.3	18
27	Time analysis for temporary gravitational capture. Astronomy and Astrophysics, 2001, 377, 1119-1127.	5.1	18
28	On the Evection Resonance and Its Connection to the Stability of Outer Satellites. Mathematical Problems in Engineering, 2008, 2008, 1-16.	1.1	17
29	Three-body problem, its Lagrangian points and how to exploit them using an alternative transfer to L4 and L5. Celestial Mechanics and Dynamical Astronomy, 2012, 114, 201-213.	1.4	17
30	Dynamics of rotationally fissioned asteroids: non-planar case. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3982-3992.	4.4	17
31	Refined physical parameters for Chariklo's body and rings from stellar occultations observed between 2013 and 2020. Astronomy and Astrophysics, 2021, 652, A141.	5.1	17
32	Poincaré surfaces of section around a 3D irregular body: the case of asteroid 4179 Toutatis. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2452-2466.	4.4	15
33	Stable retrograde orbits around the triple system 2001 SN263. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4404-4414.	4.4	14
34	APPROX – mutual approximations between the Galilean moons: the 2016–2018 observational campaign. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5190-5200.	4.4	14
35	The effect of Jupiter's mass growth on satellite capture. Astronomy and Astrophysics, 2004, 414, 727-734.	5.1	14
36	Dynamics of a spacecraft and normalization around Lagrangian points in the Neptune–Triton system. Advances in Space Research, 2008, 42, 1715-1722.	2.6	13

#	Article	IF	CITATIONS
37	Analysis of 25 mutual eclipses and occultations between the Galilean satellites observed from Brazil in 2009â~ Monthly Notices of the Royal Astronomical Society, 2013, 432, 225-242.	4.4	13
38	Powered Swing-By Maneuvers around the Moon. Journal of Physics: Conference Series, 2013, 465, 012001.	0.4	13
39	Intervening in Earth's climate system through space-based solar reflectors. Advances in Space Research, 2016, 58, 17-29.	2.6	13
40	On the location of the ring around the dwarf planet Haumea. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3765-3771.	4.4	13
41	Asteroid triple-system 2001 SN263: surface characteristics and dynamical environment. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4437-4455.	4.4	13
42	The triple near-Earth asteroid (153591) 2001 SN263: an ultra-blue, primitive target for the Aster space mission. Astronomy and Astrophysics, 2014, 568, L6.	5.1	12
43	Analytical study of the swing-by maneuver in an elliptical system. Astrophysics and Space Science, 2018, 363, 1.	1.4	12
44	2060 Chiron back to a minimum of brightness. Planetary and Space Science, 1996, 44, 1547-1550.	1.7	11
45	Distant stable direct orbits around the Moon. Astronomy and Astrophysics, 2002, 393, 661-671.	5.1	11
46	Effect of Jupiter's mass growth on satellite capture. Astronomy and Astrophysics, 2006, 452, 1091-1097.	5.1	11
47	Distribution of refractory and volatile elements in CoRoT exoplanet host stars. Astronomy and Astrophysics, 2010, 517, A40.	5.1	11
48	Alternative transfer to the Earth–Moon Lagrangian points L4 and L5 using lunar gravity assist. Advances in Space Research, 2014, 53, 543-557.	2.6	11
49	On the Erigone family and the <i>z</i> ₂ secular resonance. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2279-2288.	4.4	11
50	First stellar occultation by the Galilean moon Europa and upcoming events between 2019 and 2021. Astronomy and Astrophysics, 2019, 626, L4.	5.1	11
51	Stellar occultations enable milliarcsecond astrometry for Trans-Neptunian objects and Centaurs. Astronomy and Astrophysics, 2020, 644, A40.	5.1	11
52	Controlling the Eccentricity of Polar Lunar Orbits with Low-Thrust Propulsion. Mathematical Problems in Engineering, 2009, 2009, 1-10.	1.1	9
53	Short Lyapunov time: a method for identifying confined chaos. Astronomy and Astrophysics, 2010, 523, A67.	5.1	9
54	Dynamical Environment and Surface Characteristics of Asteroid (16) Psyche. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	9

#	Article	IF	CITATIONS
55	Surface dynamics, equilibrium points and individual lobes of the Kuiper Belt object (486958) Arrokoth. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4154-4173.	4.4	9
56	Numerical study of low-cost alternative orbits around the Moon. Advances in Space Research, 2005, 36, 552-560.	2.6	8
57	Nebular gas drag and co-orbital system dynamics. Astronomy and Astrophysics, 2008, 481, 519-527.	5.1	8
58	Exploring S-type orbits in the Pluto-Charon binary system. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	8
59	A peculiar stable region around Pluto. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3300-3307.	4.4	8
60	Chaotic Dynamics in a Low-Energy Transfer Strategy to the Equilateral Equilibrium Points in the Earth–Moon System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550077.	1.7	8
61	Zero drift regions and control strategies to keep satellite in formation around triangular libration point in the restricted Sun–Earth–Moon scenario. Advances in Space Research, 2015, 56, 1502-1518.	2.6	8
62	Natural formations at the Earth–Moon triangular point in perturbed restricted problems. Advances in Space Research, 2015, 56, 144-162.	2.6	8
63	Periodic orbits for space-based reflectors in the circular restricted three-body problem. Celestial Mechanics and Dynamical Astronomy, 2017, 128, 95-113.	1.4	8
64	Alternative paths to Earth-Moon transfer. Mathematical Problems in Engineering, 2006, 2006, 1-20.	1.1	7
65	Numerical study about natural escape and capture routes by the Moon via Lagrangian points L1 and L2. Advances in Space Research, 2007, 40, 83-95.	2.6	7
66	Dynamical evolution of Saturn's F ring dust particles. Monthly Notices of the Royal Astronomical Society, 2009, 395, 2157-2161.	4.4	7
67	The PDS 110 observing campaign – photometric and spectroscopic observations reveal eclipses are aperiodic. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1614-1625.	4.4	7
68	Milliarcsecond Astrometry for the Galilean Moons Using Stellar Occultations. Astronomical Journal, 2022, 163, 240.	4.7	7
69	Alternative paths for insertion of probes into high inclination lunar orbits. Advances in Space Research, 2007, 40, 58-68.	2.6	6
70	Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G. Celestial Mechanics and Dynamical Astronomy, 2009, 103, 281-299.	1.4	6
71	Zero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth–Moon system. Advances in Space Research, 2014, 54, 1838-1857.	2.6	6
72	Pareto Frontier for the time–energy cost vector to an Earth–Moon transfer orbit using the patched-conic approximation. Computational and Applied Mathematics, 2015, 34, 461-475.	1.3	6

#	Article	IF	CITATIONS
73	Analytical study of the powered Swing-By maneuver for elliptical systems and analysis of its efficiency. Astrophysics and Space Science, 2018, 363, 1.	1.4	6
74	Debris perturbed by radiation pressure: relative velocities across circular orbits. Advances in Space Research, 2004, 34, 1177-1180.	2.6	5
75	Irregular Satellites of Jupiter: a study of the capture direction. Earth, Moon and Planets, 2007, 100, 233-239.	0.6	5
76	Co-orbital satellites of Saturn: congenital formation. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	5
77	A Permanent Magnet Hall Thruster for Pulsed Orbit Control of Lunar Polar Satellites. Journal of Physics: Conference Series, 2014, 511, 012074.	0.4	5
78	The sailboat island and the New Horizons trajectory. Icarus, 2015, 246, 339-344.	2.5	5
79	The journey of Typhon-Echidna as a binary system through the planetary region. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5323-5331.	4.4	5
80	Sun-synchronous solar reflector orbits designed to warm Mars. Astrophysics and Space Science, 2019, 364, 1.	1.4	5
81	On the rotational motion of NEAs during close encounters with the Earth. European Physical Journal: Special Topics, 2020, 229, 1391-1403.	2.6	5
82	The structure of the co-orbital stable regions as a function of the mass ratio. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3700-3707.	4.4	5
83	Earth-size planet formation in the habitable zone of circumbinary stars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1045-1057.	4.4	5
84	Formation of the Janus-Epimetheus system through collisions. Astronomy and Astrophysics, 2015, 583, A80.	5.1	5
85	APOPHIS – effects of the 2029 Earth's encounter on the surface and nearby dynamics. Monthly Notices of the Royal Astronomical Society, 2021, 510, 95-109.	4.4	5
86	Dynamics around non-spherical symmetric bodies – I. The case of a spherical body with mass anomaly. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1450-1469.	4.4	5
87	Orbital maneuvers using gravitational capture times. Advances in Space Research, 2003, 31, 2005-2010.	2.6	4
88	A note on the horseshoe confinement model: The Poynting-Robertson effect. Astronomy and Astrophysics, 2004, 418, 759-764.	5.1	4
89	Analysis of the secular problem for triple star systems. Journal of Physics: Conference Series, 2013, 465, 012010.	0.4	4
90	Rings under close encounters with the giant planets: Chariklo versus Chiron. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4770-4777.	4.4	4

6

#	Article	IF	CITATIONS
91	Quasi circular orbits around prolate bodies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3068-3078.	4.4	4
92	On the stability of hypothetical satellites coorbital to Mimas or Enceladus. Monthly Notices of the Royal Astronomical Society, 2006, 372, 1614-1620.	4.4	3
93	Alternative Transfers to the NEOs 99942 Apophis, 1994 WR12, and 2007 UW1 via Derived Trajectories from Periodic Orbits of Family G. Mathematical Problems in Engineering, 2009, 2009, 1-12.	1.1	3
94	Extended class of exact twistons and crystalline polyethylene. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 365402.	2.1	3
95	Disclosing the generic behavior of topological solutions: An orbit-based approach. Europhysics Letters, 2012, 98, 10011.	2.0	3
96	Nebular gas drag and planetary accretion with eccentric high-mass planets. Astronomy and Astrophysics, 2013, 552, A66.	5.1	3
97	Near-Earth asteroid binaries in close encounters with the Earth. Astronomy and Astrophysics, 2014, 566, A23.	5.1	3
98	Mapping stable direct and retrograde orbits around the triple system of asteroids (45) Eugenia. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3999-4006.	4.4	3
99	Planar powered Swing-By maneuvers to brake a spacecraft. Computational and Applied Mathematics, 2018, 37, 202-219.	1.3	3
100	A mathematical study of the tethered slingshot maneuver using the elliptic restricted problem. Nonlinear Dynamics, 2020, 102, 1585-1609.	5.2	3
101	Stability and Evolution of Fallen Particles Around the Surface of Asteroid (101955) Bennu. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	3
102	Mean motion resonances and the stability of a circumbinary disk inÂaÂtriple stellar system. Astronomy and Astrophysics, 2012, 544, A63.	5.1	3
103	On the stability of additional moons orbiting Kepler-1625 b. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2583-2596.	4.4	3
104	Peculiar trajectories around the Lagrangian equilateral points. Physica D: Nonlinear Phenomena, 2007, 225, 112-118.	2.8	2
105	A possible stellar metallic enhancement in post-T Tauri stars by a planetesimal bombardment. Monthly Notices of the Royal Astronomical Society, 2007, 378, 1418-1426.	4.4	2
106	Gravitational Capture of Asteroids by Gas Drag. Mathematical Problems in Engineering, 2009, 2009, 1-11.	1.1	2
107	Celestial Mechanics: from the bases of the past to the challenges of the future. Journal of Physics: Conference Series, 2015, 641, 011001.	0.4	2
108	Planet formation in a triple stellar system: implications of the third star's orbital inclination. International Journal of Astrobiology, 2015, 14, 153-163.	1.6	2

#	Article	IF	CITATIONS
109	Analysis of the orbital evolution of exoplanets. Computational and Applied Mathematics, 2016, 35, 847-863.	1.3	2
110	Solar Power Satellite system in formation on a common geostationary orbit. Journal of Physics: Conference Series, 2017, 911, 012006.	0.4	2
111	Studying the energy variation in the powered Swing-By in the Sun-Mercury system. Journal of Physics: Conference Series, 2017, 911, 012007.	0.4	2
112	Comparison between Laplace-Lagrange secular theory and numerical simulation: the case of \$\$upsilon \$\$ Ï Andromedae planetary system. Computational and Applied Mathematics, 2018, 37, 122-132.	1.3	2
113	Collecting solar power by formation flying systems around a geostationary point. Computational and Applied Mathematics, 2018, 37, 84-95.	1.3	2
114	Errors of Powered Swing-By in the Restricted Three-Body Problem. Journal of Guidance, Control, and Dynamics, 2019, 42, 2246-2257.	2.8	2
115	An unaccounted component on the Prometheus and Pandora offset angular positions. European Physical Journal: Special Topics, 2020, 229, 1479-1489.	2.6	2
116	Location and stability of distant retrograde orbits around the Moon. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2727-2735.	4.4	2
117	Project Criss-Cross: A Preliminary Analysis. NATO ASI Series Series B: Physics, 1995, , 193-198.	0.2	2
118	The fate of particles in the dynamical environment around Kuiper-Belt object (486958) Arrokoth. Astrophysics and Space Science, 2022, 367, 1.	1.4	2
119	2001 SN263 – the contribution of their irregular shapes on the neighbourhood dynamics. Monthly Notices of the Royal Astronomical Society, 2022, 515, 606-616.	4.4	2
120	Gravitational perturbations correlated with the asteroid kinetic impact deflection technique. Scientific Reports, 2022, 12, .	3.3	2
121	Some comments on the F ring-Prometheus–Pandora environment. Advances in Space Research, 2004, 33, 2298-2302.	2.6	1
122	Optimal Impulsive Control in a Powered Swing-By. , 2013, , .		1
123	Exploring the Moon gravity to escape from the Earth–Moon system. Computational and Applied Mathematics, 2016, 35, 701-710.	1.3	1
124	The When and Where of Water in the History of the Universe. , 2018, , 47-73.		1
125	Celestial mechanics, spacecrafts, and 50th years of the first humans on the Moon. Computational and Applied Mathematics, 2018, 37, 1-6.	1.3	1
126	XIX Brazilian Colloquium on Orbital Dynamics (2018): a solid path to the 21st century. Journal of Physics: Conference Series, 2019, 1365, 011001.	0.4	1

#	Article	IF	CITATIONS
127	Effects of the mass parameter in the optimum direction of impulse and energy variation in a Powered Swing-By. Journal of Physics: Conference Series, 2019, 1365, 012008.	0.4	1
128	Energy and inclination Analysis of the powered Swing-By maneuver in elliptical system. , 2020, , .		1
129	Formation of Earth-sized planets within the Kepler-1647 system habitable zone. Monthly Notices of the Royal Astronomical Society, 2021, 504, 6144-6156.	4.4	1
130	The Liapunov Exponent as a Tool for Exploring Phase Space. , 1996, , 215-219.		1
131	Swing-By Propulsado aplicado ao sistema de Haumea. , 0, , .		1
132	Possibility of collision between co-orbital asteroids and the Earth. Computational and Applied Mathematics, 2005, 24, .	1.3	1
133	The main perturbing objects on the orbits of (616) Prometheus and (617) Pandora. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	1
134	Nebular drag and capture into spin-orbit resonance. Celestial Mechanics and Dynamical Astronomy, 1993, 57, 329-339.	1.4	0
135	Collisions with the Earth: the Moon's contribution. Advances in Space Research, 2004, 33, 1534-1538.	2.6	Ο
136	Collision and Stable Regions around Bodies with Simple Geometric Shape. Mathematical Problems in Engineering, 2009, 2009, 1-14.	1.1	0
137	Distribution of refractory and volatile elements in CoRoT planet host stars. Proceedings of the International Astronomical Union, 2009, 5, 424-425.	0.0	0
138	Exploring sensitive dependence and transitivity to optimize travel time in chaotic systems. Journal of Physics: Conference Series, 2013, 465, 012018.	0.4	0
139	Powered Swing-By in the Elliptic Restricted Problem. , 2014, , .		0
140	Astronautics & Astronomy - a Profitable Partnership. Journal of Aerospace Technology and Management, 2015, 7, 265-266.	0.3	0
141	Estimating the trajectory of a space vehicle passing by the Moon using Kalman Filter. Journal of Physics: Conference Series, 2015, 641, 012002.	0.4	0
142	Celestial mechanics: from the errant stars to guidance of spacecrafts. Computational and Applied Mathematics, 2015, 34, 417-421.	1.3	0
143	Applications of celestial mechanics in natural objects and spacecrafts. Computational and Applied Mathematics, 2017, 36, 1463-1469.	1.3	0
144	A General Method for Transforming Nonphysical Configurations in BPS States. Advances in High Energy Physics, 2019, 2019, 1-11.	1.1	0

#	Article	IF	CITATIONS
145	A computational approach to the powered Swing-By in the elliptic restricted problem. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	1.6	ο
146	Dynamics around the binary system (65803) Didymos. Proceedings of the International Astronomical Union, 2021, 15, 197-202.	0.0	0