Adrienne D Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4741890/publications.pdf

Version: 2024-02-01

36303 28297 11,635 119 51 105 citations h-index g-index papers 121 121 121 14807 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Aberrant Expression and Subcellular Localization of ECT2 Drives Colorectal Cancer Progression and Growth. Cancer Research, 2022, 82, 90-104.	0.9	19
2	Targeting the ERK mitogen-activated protein kinase cascade for the treatment of KRAS-mutant pancreatic cancer. Advances in Cancer Research, 2022, 153, 101-130.	5.0	8
3	Concurrent Inhibition of IGF1R and ERK Increases Pancreatic Cancer Sensitivity to Autophagy Inhibitors. Cancer Research, 2022, 82, 586-598.	0.9	27
4	Concurrent Inhibition of ERK and Farnesyltransferase Suppresses the Growth of HRAS Mutant Head and Neck Squamous Cell Carcinoma. Molecular Cancer Therapeutics, 2022, 21, 762-774.	4.1	9
5	Silencing of Oncogenic KRAS by Mutant-Selective Small Interfering RNA. ACS Pharmacology and Translational Science, 2021, 4, 703-712.	4.9	7
6	Targeting p130Cas- and microtubule-dependent MYC regulation sensitizes pancreatic cancer to ERK MAPK inhibition. Cell Reports, 2021, 35, 109291.	6.4	15
7	The KRAS-regulated kinome identifies WEE1 and ERK coinhibition as a potential therapeutic strategy in KRAS-mutant pancreatic cancer. Journal of Biological Chemistry, 2021, 297, 101335.	3.4	14
8	CHK1 protects oncogenic KRAS-expressing cells from DNA damage and is a target for pancreatic cancer treatment. Cell Reports, 2021, 37, 110060.	6.4	14
9	Atypical KRASG12R Mutant Is Impaired in PI3K Signaling and Macropinocytosis in Pancreatic Cancer. Cancer Discovery, 2020, 10, 104-123.	9.4	131
10	Gain-of-Function <i>RHOA</i> Mutations Promote Focal Adhesion Kinase Activation and Dependency in Diffuse Gastric Cancer. Cancer Discovery, 2020, 10, 288-305.	9.4	91
11	Low-Dose Vertical Inhibition of the RAF-MEK-ERK Cascade Causes Apoptotic Death of KRAS Mutant Cancers. Cell Reports, 2020, 31, 107764.	6.4	69
12	Application of a MYC degradation screen identifies sensitivity to CDK9 inhibitors in KRAS-mutant pancreatic cancer. Science Signaling, 2019, 12, .	3.6	46
13	Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nature Medicine, 2019, 25, 628-640.	30.7	476
14	KRAS Suppression-Induced Degradation of MYC Is Antagonized by a MEK5-ERK5 Compensatory Mechanism. Cancer Cell, 2018, 34, 807-822.e7.	16.8	112
15	Ect2-Dependent rRNA Synthesis Is Required for KRAS-TRP53 -Driven Lung Adenocarcinoma. Cancer Cell, 2017, 31, 256-269.	16.8	97
16	Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies. Science Signaling, 2017, 10, .	3.6	51
17	RPL23 Links Oncogenic RAS Signaling to p53-Mediated Tumor Suppression. Cancer Research, 2016, 76, 5030-5039.	0.9	23
18	The role of wild type RAS isoforms in cancer. Seminars in Cell and Developmental Biology, 2016, 58, 60-69.	5.0	104

#	Article	IF	Citations
19	ERK/MAPK Signaling Drives Overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-Mutant Melanoma. Molecular Cancer Research, 2016, 14, 1009-1018.	3.4	36
20	INO80 governs superenhancer-mediated oncogenic transcription and tumor growth in melanoma. Genes and Development, 2016, 30, 1440-1453.	5.9	65
21	Protein Kinase CK2α Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2α Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. Journal of Biological Chemistry, 2016, 291, 17804-17815.	3.4	28
22	Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is Associated with MYC Degradation and Senescence-like Growth Suppression. Cancer Cell, 2016, 29, 75-89.	16.8	191
23	Nanoparticle formulations of histone deacetylase inhibitors for effective chemoradiotherapy in solid tumors. Biomaterials, 2015, 51, 208-215.	11.4	59
24	K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 779-784.	7.1	184
25	Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?. Clinical Cancer Research, 2015, 21, 1819-1827.	7.0	323
26	Targeting RAS -mutant Cancers: Is ERK the Key?. Trends in Cancer, 2015, 1, 183-198.	7.4	104
27	Divergent Roles of CAAX Motif-signaled Posttranslational Modifications in the Regulation and Subcellular Localization of Ral GTPases. Journal of Biological Chemistry, 2015, 290, 22851-22861.	3.4	37
28	Up-front polytherapy for ALK-positive lung cancer. Nature Medicine, 2015, 21, 974-975.	30.7	7
29	Redox regulation of Rac1 by thiol oxidation. Free Radical Biology and Medicine, 2015, 79, 237-250.	2.9	34
30	The C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity. PLoS ONE, 2015, 10, e0133226.	2.5	11
31	Rho GTPases, oxidation, and cell redox control. Small GTPases, 2014, 5, e28579.	1.6	57
32	Drugging the undruggable RAS: Mission Possible?. Nature Reviews Drug Discovery, 2014, 13, 828-851.	46.4	1,484
33	Posttranslational Modifications of Small G Proteins. , 2014, , 99-131.		5
34	Effector Recruitment Method to Study Spatially Regulated Activation of Ras and Rho GTPases. Methods in Molecular Biology, 2014, 1120, 263-283.	0.9	1
35	The Role of Ect2 Nuclear RhoGEF Activity in Ovarian Cancer Cell Transformation. Genes and Cancer, 2013, 4, 460-475.	1.9	51
36	Extracellular Signal-regulated Kinase (ERK) Phosphorylates Histone Deacetylase 6 (HDAC6) at Serine 1035 to Stimulate Cell Migration. Journal of Biological Chemistry, 2013, 288, 33156-33170.	3.4	86

#	Article	IF	Citations
37	Src-Mediated Phosphorylation of the Tyrosine Phosphatase PRL-3 Is Required for PRL-3 Promotion of Rho Activation, Motility and Invasion. PLoS ONE, 2013, 8, e64309.	2.5	30
38	Ras inhibition boosts galectin-7 at the expense of galectin-1 to sensitize cells to apoptosis. Oncotarget, 2013, 4, 256-268.	1.8	23
39	Phosphorylation by Protein Kinase Cl̂± Regulates RalB Small GTPase Protein Activation, Subcellular Localization, and Effector Utilization. Journal of Biological Chemistry, 2012, 287, 14827-14836.	3.4	31
40	The RAF Inhibitor Paradox Revisited. Cancer Cell, 2012, 21, 147-149.	16.8	23
41	Silencing the Killers: Paracrine Immune Suppression in Pancreatic Cancer. Cancer Cell, 2012, 21, 715-716.	16.8	13
42	Folate-Targeted Polymeric Nanoparticle Formulation of Docetaxel Is an Effective Molecularly Targeted Radiosensitizer with Efficacy Dependent on the Timing of Radiotherapy. ACS Nano, 2011, 5, 8990-8998.	14.6	112
43	RALA and RALBP1 regulate mitochondrial fission atÂmitosis. Nature Cell Biology, 2011, 13, 1108-1115.	10.3	327
44	Prenylation and Phosphorylation of Ras Superfamily Small GTPases. The Enzymes, 2011, 30, 43-69.	1.7	5
45	The oncogenic kinase Pim-1 is modulated by K-Ras signaling and mediates transformed growth and radioresistance in human pancreatic ductal adenocarcinoma cells. Carcinogenesis, 2011, 32, 488-495.	2.8	55
46	Oncogenic Synergism between ErbB1, Nucleolin, and Mutant Ras. Cancer Research, 2011, 71, 2140-2151.	0.9	67
47	The Raf Inhibitor Paradox: Unexpected Consequences of Targeted Drugs. Cancer Cell, 2010, 17, 221-223.	16.8	37
48	Ras-Related Small GTPases RalA and RalB Regulate Cellular Survival After Ionizing Radiation. International Journal of Radiation Oncology Biology Physics, 2010, 78, 205-212.	0.8	23
49	TLN-4601 suppresses growth and induces apoptosis of pancreatic carcinoma cells through inhibition of Ras-ERK MAPK signaling. Journal of Molecular Signaling, 2010, 5, 18.	0.5	18
50	Genetic and functional characterization of putative Ras/Raf interaction inhibitors in C. elegans and mammalian cells. Journal of Molecular Signaling, 2010, 5, 2.	0.5	34
51	Can too much lipid glue stop Ras?. Nature Chemical Biology, 2010, 6, 483-485.	8.0	6
52	Role of R-Ras in Cell Growth. , 2010, , 1753-1762.		3
53	Radiosensitization of Epidermal Growth Factor Receptor/HER2–Positive Pancreatic Cancer Is Mediated by Inhibition of Akt Independent of Ras Mutational Status. Clinical Cancer Research, 2010, 16, 912-923.	7.0	53
54	Aurora-A Phosphorylates, Activates, and Relocalizes the Small GTPase RalA. Molecular and Cellular Biology, 2010, 30, 508-523.	2.3	100

#	Article	IF	CITATIONS
55	Regulation of the Rho Family Small GTPase Wrch-1/RhoU by C-Terminal Tyrosine Phosphorylation Requires Src. Molecular and Cellular Biology, 2010, 30, 4324-4338.	2.3	38
56	Ras history. Small GTPases, 2010, 1, 2-27.	1.6	586
57	Rho GTPases in Regulation of Cancer Cell Motility, Invasion, and Microenvironment., 2010,, 67-91.		0
58	Farnesyltransferase Inhibitors. , 2010, , 1819-1826.		1
59	The Transforming Rho Family GTPase Wrch-1 Disrupts Epithelial Cell Tight Junctions and Epithelial Morphogenesis. Molecular and Cellular Biology, 2009, 29, 1035-1049.	2.3	50
60	Regulation of Rnd3 localization and function by protein kinase Cα-mediated phosphorylation. Biochemical Journal, 2009, 424, 153-161.	3.7	53
61	Inhibitors of Chronically Active Ras: Potential for Treatment of Human Malignancies. Recent Patents on Anti-Cancer Drug Discovery, 2008, 3, 31-47.	1.6	59
62	Rho Family GTPase Modification and Dependence on CAAX Motif-signaled Posttranslational Modification. Journal of Biological Chemistry, 2008, 283, 25150-25163.	3.4	275
63	Use of Caenorhabditis elegans to Evaluate Inhibitors of Ras Function In Vivo. Methods in Enzymology, 2008, 439, 425-449.	1.0	20
64	Geranylgeranyltransferase I Inhibitors Target RalB To Inhibit Anchorage-Dependent Growth and Induce Apoptosis and RalA To Inhibit Anchorage-Independent Growth. Molecular and Cellular Biology, 2007, 27, 8003-8014.	2.3	77
65	Rac Guanosine Triphosphatases Represent Integrating Molecular Therapeutic Targets for BCR-ABL-Induced Myeloproliferative Disease. Cancer Cell, 2007, 12, 467-478.	16.8	140
66	Geranylgeranyltransferase I as a target for anti-cancer drugs. Journal of Clinical Investigation, 2007, 117, 1223-1225.	8.2	56
67	Rac GTPases Are Potential Therapeutic Targets in p210-BCR-ABL-Induced Myeloproliferative Disease (MPD) Blood, 2007, 110, 465-465.	1.4	0
68	Biochemical Analyses of the Wrch Atypical Rho Family GTPases. Methods in Enzymology, 2006, 406, 11-26.	1.0	23
69	PKC Regulates a Farnesyl-Electrostatic Switch on K-Ras that Promotes its Association with Bcl-Xl on Mitochondria and Induces Apoptosis. Molecular Cell, 2006, 21, 481-493.	9.7	421
70	Use of Retrovirus Expression of Interfering RNA to Determine the Contribution of Activated Kâ€Ras and Ras Effector Expression to Human Tumor Cell Growth. Methods in Enzymology, 2006, 407, 556-574.	1.0	21
71	Using Inhibitors of Prenylation to Block Localization and Transforming Activity. Methods in Enzymology, 2006, 407, 575-597.	1.0	30
72	PRL Tyrosine Phosphatases Regulate Rho Family GTPases to Promote Invasion and Motility. Cancer Research, 2006, 66, 3153-3161.	0.9	179

#	Article	IF	CITATIONS
73	Anti-Ras Strategies for Cancer Treatment. , 2006, , 353-380.		O
74	Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell, 2005, 7, 533-545.	16.8	330
75	Transforming Activity of the Rho Family GTPase, Wrch-1, a Wnt-regulated Cdc42 Homolog, Is Dependent on a Novel Carboxyl-terminal Palmitoylation Motif. Journal of Biological Chemistry, 2005, 280, 33055-33065.	3.4	72
76	Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12879-12884.	7.1	334
77	Rac3-Mediated Transformation Requires Multiple Effector Pathways. Cancer Research, 2005, 65, 9883-9890.	0.9	15
78	Visual monitoring of post-translational lipid modifications using EGFP-GTPase probes in live cells. Methods, 2005, 37, 131-137.	3.8	8
79	Requirement For C-terminal Sequences in Regulation of Ect2 Guanine Nucleotide Exchange Specificity and Transformation. Journal of Biological Chemistry, 2004, 279, 25226-25233.	3.4	49
80	Role of TC21/R-Ras2 in enhanced migration of neurofibromin-deficient Schwann cells. Oncogene, 2004, 23, 368-378.	5.9	35
81	Prenyl-binding domains: potential targets for Ras inhibitors and anti-cancer drugs. Seminars in Cancer Biology, 2004, 14, 253-261.	9.6	72
82	Atypical Mechanism of Regulation of the Wrch-1 Rho Family Small GTPase. Current Biology, 2004, 14, 2052-2056.	3.9	74
83	Prenyl-binding domains: potential targets for Ras inhibitors and anti-cancer drugs. Seminars in Cancer Biology, 2004, 14, 253-253.	9.6	2
84	Phospholipase Cl̂³ activates Ras on the Golgi apparatus by means of RasGRP1. Nature, 2003, 424, 694-698.	27.8	391
85	The dark side of Ras: regulation of apoptosis. Oncogene, 2003, 22, 8999-9006.	5.9	396
86	High Affinity for Farnesyltransferase and Alternative Prenylation Contribute Individually to K-Ras4B Resistance to Farnesyltransferase Inhibitors. Journal of Biological Chemistry, 2003, 278, 41718-41727.	3.4	80
87	Farnesyltransferase Inhibitors. , 2003, , 737-744.		0
88	Role of R-Ras in Cell Growth. , 2003, , 681-688.		0
89	Epidermal growth factor receptor autocrine signaling in RIE-1 cells transformed by the Ras oncogene enhances radiation resistance. Cancer Research, 2003, 63, 7807-14.	0.9	31
90	Rac1 and Rac3 are targets for geranylgeranyltransferase I inhibitor-mediated inhibition of signaling, transformation, and membrane ruffling. Cancer Research, 2003, 63, 7959-67.	0.9	49

#	Article	IF	Citations
91	Ras Family Signaling: Therapeutic Targeting. Cancer Biology and Therapy, 2002, 1, 599-606.	3.4	191
92	A Distinct Class of Dominant Negative Ras Mutants. Journal of Biological Chemistry, 2002, 277, 10813-10823.	3.4	39
93	Farnesyltransferase inhibitors: promises and realities. Current Opinion in Pharmacology, 2002, 2, 388-393.	3.5	124
94	R-Ras C-terminal sequences are sufficient to confer R-Ras specificity toH-Ras. Oncogene, 2002, 21, 4448-4461.	5.9	18
95	Ras signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biology, 2002, 4, 343-350.	10.3	582
96	Ras mediates radioresistance through both phosphatidylinositol 3-kinase-dependent and Raf-dependent but mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-independent signaling pathways. Cancer Research, 2002, 62, 4142-50.	0.9	104
97	Farnesyltransferase Inhibitors. Drugs, 2001, 61, 723-732.	10.9	56
98	Endothelial Cells Contain a Glycine-Gated Chloride Channel. Nutrition and Cancer, 2001, 40, 197-204.	2.0	45
99	Functional proteomics analysis of GTPase signaling networks. Methods in Enzymology, 2001, 332, 300-316.	1.0	2
100	Mammalian expression vectors for Ras family proteins: Generation and use of expression constructs to analyze Ras family function. Methods in Enzymology, 2001, 332, 3-36.	1.0	42
101	Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways. Oncogene, 2000, 19, 4685-4694.	5.9	48
102	RAS inhibitors: potential for cancer therapeutics. Trends in Molecular Medicine, 2000, 6, 398-402.	2.6	82
103	Single Cell Ras-GTP Analysis Reveals Altered Ras Activity in a Subpopulation of Neurofibroma Schwann Cells but Not Fibroblasts. Journal of Biological Chemistry, 2000, 275, 30740-30745.	3.4	119
104	INHIBITION OF CHRONIC REJECTION OF AORTIC ALLOGRAFTS BY DIETARY GLYCINE. Transplantation, 2000, 69, 773-781.	1.0	15
105	Concepts in Ras-directed therapy. Expert Opinion on Investigational Drugs, 1999, 8, 2121-2140.	4.1	49
106	R-Ras Signals through Specific Integrin \hat{l}_{\pm} Cytoplasmic Domains to Promote Migration and Invasion of Breast Epithelial Cells. Journal of Cell Biology, 1999, 145, 1077-1088.	5.2	143
107	Pharmacological inhibition of Ras-transformed epithelial cell growth is linked to down-regulation of epidermal growth factor–related peptides. Gastroenterology, 1999, 117, 567-576.	1.3	37
108	Ras, but not Src, transformation of RIE-1 epithelial cells is dependent on activation of the mitogen-activated protein kinase cascade. Oncogene, 1998, 16, 2565-2573.	5.9	48

#	Article	IF	CITATIONS
109	R-Ras is regulated by activators and effectors distinct from those that control Ras function. Oncogene, 1997, 14, 133-143.	5.9	49
110	Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras?. Biochimica Et Biophysica Acta: Reviews on Cancer, 1997, 1333, F51-F71.	7.4	125
111	[10] Mutation and analysis of prenylation signal sequences. Methods in Enzymology, 1995, 250, 105-121.	1.0	12
112	Guanine nucleotide exchange factors: Activators of Ras superfamily proteins. Molecular Reproduction and Development, 1995, 42, 468-476.	2.0	70
113	Ras CAAX Peptidomimetic FTI-277 Selectively Blocks Oncogenic Ras Signaling by Inducing Cytoplasmic Accumulation of Inactive Ras-Raf Complexes. Journal of Biological Chemistry, 1995, 270, 26802-26806.	3.4	319
114	[40] Biological assays for Ras transformation. Methods in Enzymology, 1995, 255, 395-412.	1.0	176
115	[21] Analysis of Ras protein expression in mammalian cells. Methods in Enzymology, 1995, 255, 195-220.	1.0	33
116	[23] Transcriptional activation analysis of oncogene function. Methods in Enzymology, 1994, 238, 271-276.	1.0	13
117	[24] Biological assays for cellular transformation. Methods in Enzymology, 1994, 238, 277-294.	1.0	90
118	Ras. , 0, , 258-271.		0
119	Farnesyltransferase and Geranylgeranyltransferase Inhibitors: The Saga Continues., 0,, 255-273.		1