Claude-André Faucher-GiguÃ"re

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4741603/publications.pdf Version: 2024-02-01

Claude-André

#	Article	IF	CITATIONS
1	Black hole–galaxy scaling relations in FIRE: the importance of black hole location and mergers. Monthly Notices of the Royal Astronomical Society, 2022, 511, 506-535.	4.4	15
2	Running late: testing delayed supermassive black hole growth models against the quasar luminosity function. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5756-5767.	4.4	8
3	Less wrong: a more realistic initial condition for simulations of turbulent molecular clouds. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4767-4778.	4.4	12
4	The galaxy–halo size relation of low-mass galaxies in FIRE. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3967-3985.	4.4	13
5	Discovery of a Damped Lyα Absorber Originating in a Spectacular Interacting Dwarf Galaxy Pair at z = 0.026. Astrophysical Journal Letters, 2022, 926, L33.	8.3	1
6	Galaxies lacking dark matter produced by close encounters in a cosmological simulation. Nature Astronomy, 2022, 6, 496-502.	10.1	31
7	The dynamics and outcome of star formation with jets, radiation, winds, and supernovae in concert. Monthly Notices of the Royal Astronomical Society, 2022, 512, 216-232.	4.4	53
8	Hot-mode accretion and the physics of thin-discÂgalaxyÂformation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5056-5073.	4.4	32
9	The In Situ Origins of Dwarf Stellar Outskirts in FIRE-2. Astrophysical Journal, 2022, 931, 152.	4.5	9
10	The galactic dust-up: modelling dust evolution in FIRE. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4506-4534.	4.4	12
11	Cluster assembly and the origin of mass segregation in the STARFORGE simulations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 167-184.	4.4	19
12	First predicted cosmic ray spectra, primary-to-secondary ratios, and ionization rates from MHD galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3470-3514.	4.4	22
13	Characterizing mass, momentum, energy, and metal outflow rates of multiphase galactic winds in the FIRE-2 cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2979-3008.	4.4	56
14	The IRX–β relation of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3210-3241.	4.4	20
15	First Cospatial Comparison of Stellar, Neutral-gas, and Ionized-gas Metallicities in a Metal-rich Galaxy: M83*. Astrophysical Journal, 2021, 908, 226.	4.5	11
16	Unravelling the physics of multiphase AGN winds through emission line tracers. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1568-1585.	4.4	7
17	STARFORGE: the effects of protostellar outflows on the IMF. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3646-3663.	4.4	39
18	Virialization of the Inner CGM in the FIRE Simulations and Implications for Galaxy Disks, Star Formation, and Feedback. Astrophysical Journal, 2021, 911, 88.	4.5	66

#	Article	IF	CITATIONS
19	The contribution of globular clusters to cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4062-4071.	4.4	9
20	Planes of satellites around Milky Way/M31-mass galaxies in the FIRE simulations and comparisons with the Local Group. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1379-1397.	4.4	40
21	The origin of metal-poor stars on prograde disc orbits in FIRE simulations of Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 921-938.	4.4	21
22	Virial shocks are suppressed in cosmic ray-dominated galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2021, 505, 259-273.	4.4	23
23	STARFORGE: Towards a comprehensive numerical model of star cluster formation and feedback. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2199-2231.	4.4	73
24	The bursty origin of the Milky Way thick disc. Monthly Notices of the Royal Astronomical Society, 2021, 505, 889-902.	4.4	32
25	Thermal instability in the CGM of <i>L</i> â<† galaxies: testing â€~precipitation' models with the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1841-1862.	4.4	19
26	The Cosmic Ultraviolet Baryon Survey (CUBS). II. Discovery of an H ₂ -bearing DLA in the Vicinity of an Early-type Galaxy at z = 0.576*. Astrophysical Journal, 2021, 913, 18.	4.5	9
27	3D gas-phase elemental abundances across the formation histories of Milky Way-mass galaxies in the FIRE simulations: initial conditions for chemical tagging. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4586-4607.	4.4	23
28	The Cosmic Ultraviolet Baryon Survey (CUBS) – III. Physical properties and elemental abundances of Lyman-limit systems at <i>z</i> < 1. Monthly Notices of the Royal Astronomical Society, 2021, 506, 877-902.	4.4	24
29	Kinematics of the Circumgalactic Medium of a z = 0.77 Galaxy from Mg ii Tomography. Astrophysical Journal, 2021, 914, 92.	4.5	15
30	Which AGN jets quench star formation in massive galaxies?. Monthly Notices of the Royal Astronomical Society, 2021, 507, 175-204.	4.4	31
31	A model for the formation of stellar associations and clusters from giant molecular clouds. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3239-3258.	4.4	48
32	Neutral CGM as damped Ly α absorbers at high redshift. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2869-2884.	4.4	17
33	Cosmological Simulations of Quasar Fueling to Subparsec Scales Using Lagrangian Hyper-refinement. Astrophysical Journal, 2021, 917, 53.	4.5	49
34	Seeds don't sink: even massive black hole â€~seeds' cannot migrate to galaxy centres efficiently. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1973-1985.	4.4	34
35	The Cosmic Ultraviolet Baryon Survey (CUBS) – Ⅳ. The complex multiphase circumgalactic medium as revealed by partial Lyman limit systems. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4359-4384.	4.4	14
36	Cosmic ray driven outflows to Mpc scales from <i>L</i> * galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3640-3662.	4.4	52

#	Article	IF	CITATIONS
37	Testing physical models for cosmic ray transport coefficients on galactic scales: self-confinement and extrinsic turbulence at â^¼GeV energies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4184-4213.	4.4	64
38	Effects of different cosmic ray transport models on galaxy formation. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3663-3669.	4.4	41
39	The time-scales probed by star formation rate indicators for realistic, bursty star formation histories from the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4812-4824.	4.4	51
40	A relationship between stellar metallicity gradients and galaxy age in dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5121-5134.	4.4	25
41	New Families in our Solar Neighborhood: Applying Gaussian Mixture Models for Objective Classification of Structures in the Milky Way and in Simulations. Astrophysical Journal, 2021, 921, 106.	4.5	8
42	Gas infall and radial transport in cosmological simulations of milky way-mass discs. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4149-4170.	4.4	30
43	Why do black holes trace bulges (& central surface densities), instead of galaxies as a whole?. Monthly Notices of the Royal Astronomical Society, 2021, 510, 630-638.	4.4	15
44	Swirls of FIRE: spatially resolved gas velocity dispersions and star formation rates in FIRE-2 disc environments. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1620-1637.	4.4	32
45	Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4221-4238.	4.4	99
46	No missing photons for reionization: moderate ionizing photon escape fractions from the FIRE-2 simulations. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2001-2017.	4.4	75
47	Pressure balance in the multiphase ISM of cosmologically simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3664-3683.	4.4	35
48	Probing the CGM of low-redshift dwarf galaxies using FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1038-1053.	4.4	8
49	The bolometric quasar luminosity function at <i>z</i> Â= 0–7. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3252-3275.	4.4	150
50	Can magnetized turbulence set the mass scale of stars?. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5072-5088.	4.4	24
51	The formation times and building blocks of Milky Way-mass galaxies in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 747-764.	4.4	47
52	The impact of AGN wind feedback in simulations of isolated galaxies with a multiphase ISM. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5292-5308.	4.4	30
53	A dark matter profile to model diverse feedback-induced core sizes of $\hat{\mathbf{b}}$ CDM haloes. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2393-2417.	4.4	71
54	Measuring dynamical masses from gas kinematics in simulated high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4051-4065.	4.4	28

#	Article	IF	CITATIONS
55	The Cosmic Ultraviolet Baryon Survey (CUBS) – I. Overview and the diverse environments of Lyman limit systems at <i>z</i> < 1. Monthly Notices of the Royal Astronomical Society, 2020, 497, 498-520.	4.4	37
56	Live fast, die young: GMC lifetimes in the FIRE cosmological simulations of Milky Way mass galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3993-3999.	4.4	37
57	The Keck Baryonic Structure Survey: using foreground/background galaxy pairs to trace the structure and kinematics of circumgalactic neutral hydrogen at <i>z</i> â^1⁄4 2. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1721-1746.	4.4	37
58	Reproducing the CO-to-H2 conversion factor in cosmological simulations of Milky-Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 837-850.	4.4	11
59	The maximum accretion rate of hot gas in dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6042-6058.	4.4	42
60	A cosmic UV/X-ray background model update. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1614-1632.	4.4	125
61	Synthetic Gaia Surveys from the FIRE Cosmological Simulations of Milky Way-mass Galaxies. Astrophysical Journal, Supplement Series, 2020, 246, 6.	7.7	77
62	The universal acceleration scale from stellar feedback. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L127-L132.	3.3	9
63	The fates of the circumgalactic medium in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3581-3595.	4.4	46
64	But what about: cosmic rays, magnetic fields, conduction,Âand viscosity in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3465-3498.	4.4	107
65	Variations in the slope of the resolved star-forming main sequence: a tool for constraining the mass of star-forming regions. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L87-L91.	3.3	10
66	Radiative stellar feedback in galaxy formation: Methods and physics. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3702-3729.	4.4	64
67	Cosmic rays or turbulence can suppress cooling flows (where thermal heating or momentum) Tj ETQq1 1 0.784	314 rgBT / 4.4	Overlock 10
68	A profile in FIRE: resolving the radial distributions of satellite galaxies in the Local Group with simulations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1471-1490.	4.4	77
69	Self-consistent proto-globular cluster formation in cosmological simulations of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4315-4332.	4.4	59
70	Stars made in outflows may populate the stellar halo of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1539-1559.	4.4	24
71	Realistic mock observations of the sizes and stellar mass surface densities of massive galaxies in FIRE-2 zoom-in simulations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1591-1602.	4.4	29
72	Optical Variability of the Dwarf AGN NGC 4395 from the Transiting Exoplanet Survey Satellite. Astrophysical Journal, 2020, 899, 136.	4.5	14

#	Article	IF	CITATIONS
73	Project AMIGA: The Circumgalactic Medium of Andromeda*. Astrophysical Journal, 2020, 900, 9.	4.5	48
74	The origins of the circumgalactic medium in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1248-1272.	4.4	132
75	Predictions for the spatial distribution of the dust continuum emission in \$oldsymbol {1,lt, z,lt, 5}\$ star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1779-1789.	4.4	61
76	On the nature of variations in the measured star formation efficiency of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1501-1518.	4.4	41
77	The failure of stellar feedback, magnetic fields, conduction, and morphological quenching in maintaining red galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4393-4408.	4.4	38
78	Dwarf galaxies in CDM, WDM, and SIDM: disentangling baryons and dark matter physics. Monthly Notices of the Royal Astronomical Society, 2019, 490, 962-977.	4.4	54
79	Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4447-4463.	4.4	139
80	Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV Î ³ -ray emission. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3716-3744.	4.4	106
81	On the dust temperatures of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1397-1422.	4.4	97
82	A predicted correlation between age gradient and star formation history in FIRE dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1186-1201.	4.4	20
83	Cooling flow solutions for the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2549-2572.	4.4	61
84	Star formation histories of dwarf galaxies in the FIRE simulations: dependence on mass and Local Group environment. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4574-4588.	4.4	83
85	The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1380-1399.	4.4	137
86	Dust attenuation, dust emission, and dust temperature in galaxies at z ≥ 5: a view from the FIRE-2 simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1844-1864.	4.4	87
87	Formation, vertex deviation, and age of the Milky Way's bulge: input from a cosmological simulation with a late-forming bar. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5073-5085.	4.4	31
88	The Galaxy–Halo Connection in Low-mass Halos. Astrophysical Journal Letters, 2019, 871, L21.	8.3	12
89	What drives the evolution of gas kinematics in star-forming galaxies?. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5125-5137.	4.4	30
90	Simulations of jet heating in galaxy clusters: successes and challenges. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2465-2486.	4.4	41

#	Article	IF	CITATIONS
91	The physics of LymanÂα escape from high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 484, 39-59.	4.4	76
92	Warm FIRE: simulating galaxy formation with resonant sterile neutrino dark matter. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4086-4099.	4.4	34
93	Under the FIRElight: Stellar Tracers of the Local Dark Matter Velocity Distribution in the Milky Way. Astrophysical Journal, 2019, 883, 27.	4.5	40
94	When feedback fails: the scaling and saturation of star formation efficiency. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3511-3528.	4.4	120
95	On the deuterium abundance and the importance of stellar mass loss in the interstellar and intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2018, 477, 80-92.	4.4	9
96	Recent progress in simulating galaxy formation from the largest to the smallest scales. Nature Astronomy, 2018, 2, 368-373.	10.1	8
97	The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3673-3699.	4.4	87
98	Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L111-L115.	3.3	23
99	Submillimetre flux as a probe of molecular ISM mass in high- <i>z</i> galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 478, L83-L88.	3.3	37
100	Reconciling Observed and Simulated Stellar Halo Masses. Astrophysical Journal, 2018, 869, 12.	4.5	48
101	Does Circumgalactic O vi Trace Low-pressure Gas Beyond the Accretion Shock? Clues from H i and Low-ion Absorption, Line Kinematics, and Dust Extinction. Astrophysical Journal, 2018, 865, 91.	4.5	41
102	The origin of the diverse morphologies and kinematics of Milky Way-mass galaxies in the FIRE-2 simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4133-4157.	4.4	91
103	No assembly required: mergers are mostly irrelevant for the growth of low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 319-331.	4.4	48
104	Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes. Monthly Notices of the Royal Astronomical Society, 2018, 477, 219-229.	4.4	48
105	FIRE-2 simulations: physics versus numerics in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 800-863.	4.4	676
106	Discrete Effects in Stellar Feedback: Individual Supernovae, Hypernovae, and IMF Sampling in Dwarf Galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1666-1675.	4.4	38
107	Radiative cooling of swept-up gas in AGN-driven galactic winds and its implications for molecular outflows. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3100-3119.	4.4	60
108	Gas kinematics, morphology and angular momentum in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1930-1955.	4.4	131

#	Article	IF	CITATIONS
109	A model for the origin of bursty star formation in galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3717-3731.	4.4	80
110	Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2194-2211.	4.4	111
111	Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4232-4244.	4.4	79
112	What FIREs up star formation: the emergence of the Kennicutt–Schmidt law from feedback. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3653-3673.	4.4	91
113	Gas kinematics in FIRE simulated galaxies compared to spatially unresolved H i observations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1536-1548.	4.4	37
114	How to model supernovae in simulations of star and galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1578-1603.	4.4	140
115	Where are the most ancient stars in the Milky Way?. Monthly Notices of the Royal Astronomical Society, 2018, 480, 652-668.	4.4	96
116	Simulating galaxies in the reionization era with FIRE-2: galaxy scaling relations, stellar mass functions, and luminosity functions. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1694-1715.	4.4	106
117	When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies. Astrophysical Journal, 2017, 835, 193.	4.5	41
118	The structure and dynamical evolution of the stellar disc of a simulated Milky Way-mass galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2430-2444.	4.4	125
119	Gravitational torque-driven black hole growth and feedback in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2840-2853.	4.4	162
120	The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4698-4719.	4.4	289
121	Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxiesÂ. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1709-1727.	4.4	242
122	An instability of feedback-regulated star formation in galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2301-2314.	4.4	42
123	Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit "Coherent―Star Formation. Astrophysical Journal Letters, 2017, 849, L2.	8.3	19
124	Project AMIGA: A Minimal Covering Factor for Optically Thick Circumgalactic Gas around the Andromeda Galaxy. Astrophysical Journal, 2017, 846, 141.	4.5	17
125	High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM. Astrophysical Journal, 2017, 843, 47.	4.5	74
126	(Star)bursts of FIRE: observational signatures of bursty star formation in galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 466, 88-104.	4.4	169

#	Article	IF	CITATIONS
127	Colours, star formation rates and environments of star-forming and quiescent galaxies at the cosmic noon. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1050-1072.	4.4	65
128	Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction and metal diffusion on sub-L* galaxy formation. Monthly Notices of the Royal Astronomical Society, 2017, 471, 144-166.	4.4	113
129	Metal flows of the circumgalactic medium, and the metal budget in galactic haloes. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4170-4188.	4.4	119
130	fire in the field: simulating the threshold of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3547-3562.	4.4	173
131	SIDM on fire: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2945-2954.	4.4	61
132	Testing the Recovery of Intrinsic Galaxy Sizes and Masses of zÂâ^1⁄4Â2 Massive Galaxies Using Cosmological Simulations. Astrophysical Journal Letters, 2017, 844, L6.	8.3	25
133	Dwarf galaxy mass estimators versus cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4786-4796.	4.4	23
134	How supernovae launch galactic winds?. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 470, L39-L43.	3.3	67
135	Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 465, 952-969.	4.4	90
136	Low-redshift Lyman limit systems as diagnostics of cosmological inflows and outflows. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2292-2304.	4.4	65
137	Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 472, L109-L114.	3.3	176
138	Observational Diagnostics of Gas Flows: Insights from Cosmological Simulations. Astrophysics and Space Science Library, 2017, , 271-300.	2.7	5
139	Supernova feedback in a local vertically stratified medium: interstellar turbulence and galactic winds. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2311-2326.	4.4	89
140	Binary stars can provide the â€~missing photons' needed for reionization. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3614-3619.	4.4	115
141	The impact of stellar feedback on hot gas in galaxy haloes: the Sunyaev–Zel'dovich effect and soft X-ray emission. Monthly Notices of the Royal Astronomical Society, 2016, 463, 4533-4544.	4.4	47
142	RECONCILING DWARF GALAXIES WITH Ĵ·CDM COSMOLOGY: SIMULATING A REALISTIC POPULATION OF SATELLITES AROUND A MILKY WAY–MASS GALAXY. Astrophysical Journal Letters, 2016, 827, L23.	8.3	430
143	Strongly time-variable ultraviolet metal-line emission from the circum-galactic medium of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 463, 120-133.	4.4	15
144	BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES. Astrophysical Journal, 2016, 820, 131.	4.5	205

#	Article	IF	CITATIONS
145	CONSTRAINING THE DYNAMICAL IMPORTANCE OF HOT GAS AND RADIATION PRESSURE IN QUASAR OUTFLOWS USING EMISSION LINE RATIOS. Astrophysical Journal, 2016, 819, 130.	4.5	33
146	A stellar feedback origin for neutral hydrogen in high-redshift quasar-mass haloes. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L32-L36.	3.3	89
147	Formation of new stellar populations from gas accreted by massive young star clusters. Nature, 2016, 529, 502-504.	27.8	28
148	Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows. Monthly Notices of the Royal Astronomical Society, 2016, 458, 816-831.	4.4	143
149	The formation of massive, quiescent galaxies at cosmic noon. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 458, L14-L18.	3.3	78
150	The origin and evolution of the galaxy mass–metallicity relation. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2140-2156.	4.4	307
151	Forged in fire: cusps, cores and baryons in low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2092-2106.	4.4	291
152	The difficulty of getting high escape fractions of ionizing photons from high-redshift galaxies: a view from the FIRE cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 960-975.	4.4	126
153	Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2691-2713.	4.4	478
154	Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2015, 449, 987-1003.	4.4	139
155	Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy. Monthly Notices of the Royal Astronomical Society, 2015, 447, 140-148.	4.4	148
156	Observational signatures of galactic winds powered by active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3612-3622.	4.4	96
157	Supernova feedback in an inhomogeneous interstellar medium. Monthly Notices of the Royal Astronomical Society, 2015, 450, 504-522.	4.4	216
158	Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Monthly Notices of the Royal Astronomical Society, 2014, 445, 581-603.	4.4	1,068
159	Feedback-regulated star formation in molecular clouds and galactic discs. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1970-1990.	4.4	152
160	A physical model of FeLoBALs: implications for quasar feedback. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1347-1354.	4.4	96
161	Concordance models of reionization: implications for faint galaxies and escape fraction evolution. Monthly Notices of the Royal Astronomical Society, 2012, 423, 862-876.	4.4	274
162	The physics of galactic winds driven by active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2012, 425, 605-622.	4.4	375

#	Article	IF	CITATIONS
163	ON LYMAN-LIMIT SYSTEMS AND THE EVOLUTION OF THE INTERGALACTIC IONIZING BACKGROUND. Astrophysical Journal, 2011, 743, 82.	4.5	136
164	Pulsar-black hole binaries in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3951-3961.	4.4	53
165	The baryonic assembly of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2982-2999.	4.4	244
166	The small covering factor of cold accretion streams. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 412, L118-L122.	3.3	145
167	Lyα COOLING EMISSION FROM GALAXY FORMATION. Astrophysical Journal, 2010, 725, 633-657.	4.5	196
168	A MEASUREMENT OF SMALL-SCALE STRUCTURE IN THE 2.2 ⩽ <i>z</i> ⩽ 4.2 Lyα FOREST. Astrophysical Jo 2010, 718, 199-230.	ournal, 4.5	131
169	He II REIONIZATION AND ITS EFFECT ON THE INTERGALACTIC MEDIUM. Astrophysical Journal, 2009, 694, 842-866.	4.5	219
170	A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF He II REIONIZATION. Astrophysical Journal, 2009, 703, 1416-1443.	4.5	529
171	A Flat Photoionization Rate at 2 ≤i>z ≤4.2: Evidence for a Stellar-Dominated UV Background and against a Decline of Cosmic Star Formation beyond <i>z</i> ~ 3. Astrophysical Journal, 2008, 682, L9-L12.	4.5	77
172	Why do high-redshift galaxies show diverse gas-phase metallicity gradients?. Monthly Notices of the Royal Astronomical Society, 0, , stx034.	4.4	46
173	Predictions for Complex Distributions of Stellar Elemental Abundances in Low-Mass Galaxies. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	3