
Phillip Christopher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4740588/publications.pdf Version: 2024-02-01

PHILLID CHRISTORHER

#	Article	IF	CITATIONS
1	Enhancing sintering resistance of atomically dispersed catalysts in reducing environments with organic monolayers. Green Energy and Environment, 2022, 7, 1263-1269.	8.7	12
2	Dynamic Pt Coordination in Dilute AgPt Alloy Nanoparticle Catalysts Under Reactive Environments. Topics in Catalysis, 2022, 65, 1587-1603.	2.8	6
3	Chemical Production Using Light: Are Sustainable Photons Cheap Enough?. ACS Energy Letters, 2022, 7, 880-884.	17.4	18
4	Aggregation of CeO ₂ particles with aligned grains drives sintering of Pt single atoms in Pt/CeO ₂ catalysts. Journal of Materials Chemistry A, 2022, 10, 7029-7035.	10.3	2
5	Sustainable Photons. ACS Energy Letters, 2022, 7, 843-843.	17.4	0
6	Gas Diffusion Electrodes for CO ₂ and N ₂ Reduction: A Virtual Issue. ACS Energy Letters, 2022, 7, 1469-1472.	17.4	11
7	Reply to: Distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination. Nature Catalysis, 2022, 5, 247-250.	34.4	7
8	Alumina Graphene Catalytic Condenser for Programmable Solid Acids. Jacs Au, 2022, 2, 1123-1133.	7.9	9
9	Selective Reduction of Carboxylic Acids to Aldehydes with Promoted MoO ₃ Catalysts. ACS Catalysis, 2022, 12, 6313-6324.	11.2	8
10	Elucidating CO Oxidation Pathways on Rh Atoms and Clusters on the "29―Cu ₂ O/Cu(111) Surface. Journal of Physical Chemistry C, 2022, 126, 11091-11102.	3.1	1
11	A Heterogeneous Pt-ReO _{<i>x</i>} /C Catalyst for Making Renewable Adipates in One Step from Sugar Acids. ACS Catalysis, 2021, 11, 95-109.	11.2	20
12	Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Review. Small, 2021, 17, e2006482.	10.0	49
13	Energy Spotlight. ACS Energy Letters, 2021, 6, 2359-2361.	17.4	0
14	First-principles design of a single-atom–alloy propane dehydrogenation catalyst. Science, 2021, 372, 1444-1447.	12.6	185
15	Theoretical Study of Ethylene Hydroformylation on Atomically Dispersed Rh/Al ₂ O ₃ Catalysts: Reaction Mechanism and Influence of the ReO _{<i>x</i>} Promoter. ACS Catalysis, 2021, 11, 9506-9518.	11.2	31
16	Synthesis of Heteroatom Rh–ReOx Atomically Dispersed Species on Al2O3 and Their Tunable Catalytic Reactivity in Ethylene Hydroformylation. Microscopy and Microanalysis, 2021, 27, 1570-1571.	0.4	0
17	Support functionalization as an approach for modifying activation entropies of catalytic reactions on atomically dispersed metal sites. Journal of Catalysis, 2021, 404, 883-896.	6.2	17
18	Theoretical and Experimental Characterization of Adsorbed CO and NO on γ-Al ₂ O ₃ -Supported Rh Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 19733-19755.	3.1	9

PHILLIP CHRISTOPHER

#	Article	IF	CITATIONS
19	<i>Why Seeing Is Not Always Believing</i> : Common Pitfalls in Photocatalysis and Electrocatalysis. ACS Energy Letters, 2021, 6, 707-709.	17.4	28
20	Fundamental insights into heterogeneous single-atom catalysis. Journal of Chemical Physics, 2021, 155, 210401.	3.0	6
21	Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nature Energy, 2020, 5, 61-70.	39.5	466
22	Uniformity Is Key in Defining Structure–Function Relationships for Atomically Dispersed Metal Catalysts: The Case of Pt/CeO ₂ . Journal of the American Chemical Society, 2020, 142, 169-184.	13.7	170
23	Relationship between Atomic Scale Structure and Reactivity of Pt Catalysts: Hydrodeoxygenation of <i>m</i> -Cresol over Isolated Pt Cations and Clusters. ACS Catalysis, 2020, 10, 595-603.	11.2	68
24	Selective Methanol Carbonylation to Acetic Acid on Heterogeneous Atomically Dispersed ReO ₄ /SiO ₂ Catalysts. Journal of the American Chemical Society, 2020, 142, 14178-14189.	13.7	51
25	Recent advances in single-atom catalysts and single-atom alloys: opportunities for exploring the uncharted phase space in-between. Current Opinion in Chemical Engineering, 2020, 29, 67-73.	7.8	32
26	Atomically Dispersed Pt-group Catalysts: Reactivity, Uniformity, Structural Evolution, and Paths to Increased Functionality. Journal of Physical Chemistry Letters, 2020, 11, 10114-10123.	4.6	24
27	Automating Academic Laboratories: Promoting Reliability, Productivity, and Safety. ACS Energy Letters, 2020, 5, 2737-2738.	17.4	1
28	Dynamic Control of Elementary Step Energetics via Pulsed Illumination Enhances Photocatalysis on Metal Nanoparticles. ACS Energy Letters, 2020, 5, 3518-3525.	17.4	41
29	Energy Spotlight. ACS Energy Letters, 2020, 5, 3051-3052.	17.4	0
30	The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ACS Catalysis, 2020, 10, 12666-12695.	11.2	54
31	Insights into Spectator-Directed Catalysis: CO Adsorption on Amine-Capped Platinum Nanoparticles on Oxide Supports. ACS Applied Materials & amp; Interfaces, 2020, 12, 27765-27776.	8.0	14
32	Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nature Catalysis, 2020, 3, 564-573.	34.4	81
33	Catalytic resonance theory: parallel reaction pathway control. Chemical Science, 2020, 11, 3501-3510.	7.4	35
34	Reductant composition influences the coordination of atomically dispersed Rh on anatase TiO ₂ . Catalysis Science and Technology, 2020, 10, 1597-1601.	4.1	34
35	Low-Temperature Ammonia Production during NO Reduction by CO Is Due to Atomically Dispersed Rhodium Active Sites. ACS Catalysis, 2020, 10, 5217-5222.	11.2	40
36	Photochemistry of Plasmonic Titanium Nitride Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 21796-21804.	3.1	33

3

#	Article	IF	CITATIONS
37	Atomically Dispersed Rh Active Sites on Oxide Supports with Controlled Acidity for Gas-Phase Halide-Free Methanol Carbonylation to Acetic Acid. Industrial & Engineering Chemistry Research, 2019, 58, 12632-12641.	3.7	42
38	Energy Selects. ACS Energy Letters, 2019, 4, 2021-2023.	17.4	2
39	Plasmon-Mediated Catalytic O ₂ Dissociation on Ag Nanostructures: Hot Electrons or Near Fields?. ACS Energy Letters, 2019, 4, 1803-1809.	17.4	136
40	Synthesis of Heteroatom Rh–ReO _{<i>x</i>} Atomically Dispersed Species on Al ₂ O ₃ and Their Tunable Catalytic Reactivity in Ethylene Hydroformylation. ACS Catalysis, 2019, 9, 10899-10912.	11.2	81
41	Single-Atom Catalysts: Are All Sites Created Equal?. ACS Energy Letters, 2019, 4, 2249-2250.	17.4	36
42	Impact of chemical interface damping on surface plasmon dephasing. Faraday Discussions, 2019, 214, 59-72.	3.2	53
43	Single-step catalytic conversion of furfural to 2-pentanol over bimetallic Co–Cu catalysts. Reaction Chemistry and Engineering, 2019, 4, 261-267.	3.7	17
44	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	3.2	34
45	Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nature Materials, 2019, 18, 746-751.	27.5	404
46	Response to Comment on "Quantifying hot carrier and thermal contributions in plasmonic photocatalysis― Science, 2019, 364, .	12.6	131
47	Influence of Metal Oxide Support Acid Sites on Cu-Catalyzed Nonoxidative Dehydrogenation of Ethanol to Acetaldehyde. ACS Catalysis, 2019, 9, 3537-3550.	11.2	72
48	Resonant and Selective Excitation of Photocatalytically Active Defect Sites in TiO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 10351-10355.	8.0	1
49	Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nature Communications, 2019, 10, 4488.	12.8	191
50	We Editors Are Authors, Too. ACS Energy Letters, 2019, 4, 249-250.	17.4	2
51	Recent Developments in Nitrogen Reduction Catalysts: A Virtual Issue. ACS Energy Letters, 2019, 4, 163-166.	17.4	115
52	Nitrate Removal via a Formate Radical-Induced Photochemical Process. Environmental Science & Technology, 2019, 53, 316-324.	10.0	43
53	Effects of Cu–Ni Bimetallic Catalyst Composition and Support on Activity, Selectivity, and Stability for Furfural Conversion to 2-Methyfuran. ACS Sustainable Chemistry and Engineering, 2018, 6, 2152-2161.	6.7	80
54	Surface-Mediated Processes for Energy Production and Conversion: Critical Considerations in Model System Design for DFT Calculations. ACS Energy Letters, 2018, 3, 3015-3016.	17.4	10

PHILLIP CHRISTOPHER

#	Article	IF	CITATIONS
55	Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science, 2018, 362, 69-72.	12.6	756
56	Nature of stable single atom Pt catalysts dispersed on anatase TiO2. Journal of Catalysis, 2018, 367, 104-114.	6.2	189
57	Monitoring Chemical Reactions with Terahertz Rotational Spectroscopy. ACS Photonics, 2018, 5, 3097-3106.	6.6	19
58	Hybrid Catalytic Biorefining of Hardwood Biomass to Methylated Furans and Depolymerized Technical Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 10587-10594.	6.7	33
59	Combining <i>In-Situ</i> Transmission Electron Microscopy and Infrared Spectroscopy for Understanding Dynamic and Atomic-Scale Features of Supported Metal Catalysts. Journal of Physical Chemistry C, 2018, 122, 25143-25157.	3.1	41
60	Approaches for Understanding and Controlling Interfacial Effects in Oxide-Supported Metal Catalysts. ACS Catalysis, 2018, 8, 7368-7387.	11.2	224
61	Unifying Mechanistic Analysis of Factors Controlling Selectivity in Fructose Dehydration to 5-Hydroxymethylfurfural by Homogeneous Acid Catalysts in Aprotic Solvents. ACS Catalysis, 2018, 8, 5591-5600.	11.2	73
62	Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with <i>in Situ</i> TEM and IR. Journal of the American Chemical Society, 2017, 139, 4551-4558.	13.7	186
63	Support Induced Control of Surface Composition in Cu–Ni/TiO ₂ Catalysts Enables High Yield Co-Conversion of HMF and Furfural to Methylated Furans. ACS Catalysis, 2017, 7, 4070-4082.	11.2	152
64	Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna–Reactor Plasmonic Photocatalysis. Nano Letters, 2017, 17, 3710-3717.	9.1	202
65	Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles: Key Evidence from the Action Spectrum of the Reaction. Journal of Physical Chemistry Letters, 2017, 8, 2526-2534.	4.6	50
66	Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass. Current Opinion in Biotechnology, 2017, 45, 127-135.	6.6	58
67	Hot Charge Carrier Transmission from Plasmonic Nanostructures. Annual Review of Physical Chemistry, 2017, 68, 379-398.	10.8	218
68	Using probe molecule FTIR spectroscopy to identify and characterize Pt-group metal based single atom catalysts. Chinese Journal of Catalysis, 2017, 38, 1473-1480.	14.0	86
69	Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO ₂ . Journal of the American Chemical Society, 2017, 139, 14150-14165.	13.7	525
70	Evaluation of platinum catalysts for naval submarine pollution control. Applied Catalysis B: Environmental, 2017, 203, 533-540.	20.2	15
71	Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nature Chemistry, 2017, 9, 120-127.	13.6	609
72	Mechanism of CO2 reduction by H2 on Ru(0 0 0 1) and general selectivity descriptors for late-transition metal catalysts. Journal of Catalysis, 2016, 343, 86-96.	6.2	104

#	Article	IF	CITATIONS
73	Utilizing Quantitative <i>in Situ</i> FTIR Spectroscopy To Identify Well-Coordinated Pt Atoms as the Active Site for CO Oxidation on Al ₂ O ₃ -Supported Pt Catalysts. ACS Catalysis, 2016, 6, 5599-5609.	11.2	246
74	Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catalysis Science and Technology, 2016, 6, 6836-6844.	4.1	11
75	Non-plasmonic metal nanoparticles as visible light photocatalysts for the selective oxidation of aliphatic alcohols with molecular oxygen at near ambient conditions. Chemical Communications, 2016, 52, 11567-11570.	4.1	32
76	Scaled Degree of Rate Control: Identifying Elementary Steps That Control Differences in Performance of Transition-Metal Catalysts. ACS Catalysis, 2016, 6, 5268-5272.	11.2	23
77	Isolated Metal Active Site Concentration and Stability Control Catalytic CO ₂ Reduction Selectivity. Journal of the American Chemical Society, 2015, 137, 3076-3084.	13.7	544
78	A general and robust approach for defining and solving microkinetic catalytic systems. AICHE Journal, 2015, 61, 188-199.	3.6	15
79	Plasmons at the interface. Science, 2015, 349, 587-588.	12.6	79
80	Adsorbate Specificity in Hot Electron Driven Photochemistry on Catalytic Metal Surfaces. Journal of Physical Chemistry C, 2014, 118, 28017-28031.	3.1	53
81	Direct Photocatalysis by Plasmonic Nanostructures. ACS Catalysis, 2014, 4, 116-128.	11.2	773
82	Controlling Catalytic Selectivity on Metal Nanoparticles by Direct Photoexcitation of Adsorbate–Metal Bonds. Nano Letters, 2014, 14, 5405-5412.	9.1	217
83	Catalytic and Photocatalytic Transformations on Metal Nanoparticles with Targeted Geometric and Plasmonic Properties. Accounts of Chemical Research, 2013, 46, 1890-1899.	15.6	245
84	Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Materials, 2012, 11, 1044-1050.	27.5	720
85	Design of Plasmonic Platforms for Selective Molecular Sensing Based on Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 9824-9829.	3.1	22
86	Predictive Model for the Design of Plasmonic Metal/Semiconductor Composite Photocatalysts. ACS Catalysis, 2011, 1, 1441-1447.	11.2	279
87	Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry, 2011, 3, 467-472.	13.6	1,662
88	Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 2011, 10, 911-921.	27.5	4,163
89	Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons. Journal of Physical Chemistry C, 2010, 114, 9173-9177.	3.1	307
90	Shape―and Sizeâ€Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation. ChemCatChem, 2010, 2, 78-83.	3.7	186

#	Article	IF	CITATIONS
91	Overcoming Limitation in the Design of Selective Solid Catalysts by Manipulating Shape and Size of Catalytic Particles: Epoxidation Reactions on Silver. ChemCatChem, 2010, 2, 1061-1063.	3.7	34
92	Engineering Selectivity in Heterogeneous Catalysis: Ag Nanowires as Selective Ethylene Epoxidation Catalysts. Journal of the American Chemical Society, 2008, 130, 11264-11265.	13.7	288