
## Wolfgang Schöpp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/473951/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nature Communications, 2022, 13, 106.                                                                         | 12.8 | 86        |
| 2  | Analysis of the air pollution reduction and climate change mitigation effects of the Three-Year Action<br>Plan for Blue Skies on the "2+26―Cities in China. Journal of Environmental Management, 2022, 317,<br>115455. | 7.8  | 26        |
| 3  | The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health,<br>The, 2021, 6, e64-e81.                                                                                            | 10.0 | 106       |
| 4  | Air quality and health implications of 1.5 °C–2 °C climate pathways under considerations of ageing population: a multi-model scenario analysis. Environmental Research Letters, 2021, 16, 045005.                      | 5.2  | 19        |
| 5  | The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity. Lancet Public Health, The, 2021, 6, e932-e947.                                                          | 10.0 | 41        |
| 6  | Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions. Climatic Change, 2020, 158, 141-160.                                                                                         | 3.6  | 36        |
| 7  | Reducing global air pollution: the scope for further policy interventions. Philosophical Transactions<br>Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190331.                              | 3.4  | 70        |
| 8  | Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050<br>timeframe –results from the GAINS model. Environmental Research Communications, 2020, 2, 025004.                     | 2.3  | 96        |
| 9  | Decarbonization pathways and energy investment needs for developing Asia in line with â€~well below'<br>2°C. Climate Policy, 2020, 20, 234-245.                                                                        | 5.1  | 18        |
| 10 | Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons. Atmospheric Chemistry and Physics, 2020, 20, 11305-11327.                                                     | 4.9  | 26        |
| 11 | Mitigation pathways towards national ambient air quality standards in India. Environment<br>International, 2019, 133, 105147.                                                                                          | 10.0 | 62        |
| 12 | Applying Integrated Exposure-Response Functions to PM2.5 Pollution in India. International Journal of Environmental Research and Public Health, 2019, 16, 60.                                                          | 2.6  | 12        |
| 13 | Air Quality Improvement Co-benefits of Low-Carbon Pathways toward Well Below the 2 °C Climate<br>Target in China. Environmental Science & Technology, 2019, 53, 5576-5584.                                             | 10.0 | 81        |
| 14 | Mitigation pathways of air pollution from residential emissions in the Beijing-Tianjin-Hebei region in China. Environment International, 2019, 125, 236-244.                                                           | 10.0 | 66        |
| 15 | Outlook for clean air in the context of sustainable development goals. Global Environmental Change, 2018, 53, 1-11.                                                                                                    | 7.8  | 119       |
| 16 | A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy, 2018, 3, 515-527.                                                  | 39.5 | 733       |
| 17 | Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development<br>Goals. Nature Energy, 2018, 3, 589-599.                                                                        | 39.5 | 377       |
| 18 | Cost estimates of the Kigali Amendment to phase-down hydrofluorocarbons. Environmental Science and Policy, 2017, 75, 138-147.                                                                                          | 4.9  | 52        |

Wolfgang SchĶpp

| #  | ARTICLE                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change, 2017, 42, 251-267.            | 7.8  | 590       |
| 20 | Clobal anthropogenic emissions of particulate matter including black carbon. Atmospheric Chemistry and Physics, 2017, 17, 8681-8723.                                            | 4.9  | 496       |
| 21 | Modelling PM2.5 impact indicators in Europe: Health effects and legal compliance. Environmental<br>Modelling and Software, 2015, 74, 201-211.                                   | 4.5  | 77        |
| 22 | Co-benefits of post-2012 global climate mitigation policies. Mitigation and Adaptation Strategies for<br>Global Change, 2013, 18, 801-824.                                      | 2.1  | 74        |
| 23 | Better air for better health: Forging synergies in policies for energy access, climate change and air pollution. Global Environmental Change, 2013, 23, 1122-1130.              | 7.8  | 99        |
| 24 | Mitigation Efforts Calculator (MEC). Information Systems Frontiers, 2013, 15, 223-233.                                                                                          | 6.4  | 2         |
| 25 | Environmental Modeling and Methods for Estimation of the Global Health Impacts of Air Pollution.<br>Environmental Modeling and Assessment, 2012, 17, 613-622.                   | 2.2  | 61        |
| 26 | Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling and Software, 2011, 26, 1489-1501.              | 4.5  | 578       |
| 27 | Spatial Differentiation in the Characterisation of Photochemical Ozone Formation: The EDIP2003<br>Methodology. International Journal of Life Cycle Assessment, 2006, 11, 72-80. | 4.7  | 59        |
| 28 | Uncertainty analysis of emission estimates in the RAINS integrated assessment model. Environmental Science and Policy, 2005, 8, 601-613.                                        | 4.9  | 38        |
| 29 | Forecast of Sulfur Deposition in Japan for Various Energy Supply and Emission Control Scenarios.<br>Water, Air, and Soil Pollution, 2001, 130, 301-306.                         | 2.4  | 9         |
| 30 | Carbon in global waste and wastewater flows – its potential as energy source under alternative future waste management regimes. Advances in Geosciences, 0, 45, 105-113.        | 12.0 | 18        |