
Wendy Béguelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4738912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nature Immunology, 2022, 23, 330-340.	14.5	26
2	Histone 3 Methyltransferases Alter Melanoma Initiation and Progression Through Discrete Mechanisms. Frontiers in Cell and Developmental Biology, 2022, 10, 814216.	3.7	2
3	Tumor-associated antigen PRAME exhibits dualistic functions that are targetable in diffuse large B cell lymphoma. Journal of Clinical Investigation, 2022, 132, .	8.2	12
4	Loss of function mutations of <i>BCOR</i> in classical Hodgkin lymphoma. Leukemia and Lymphoma, 2022, 63, 1080-1090.	1.3	2
5	Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature, 2021, 589, 299-305.	27.8	155
6	Smc3 dosage regulates B cell transit through germinal centers and restricts their malignant transformation. Nature Immunology, 2021, 22, 240-253.	14.5	24
7	An Autochthonous Mouse Model of <i>Myd88</i> - and <i>BCL2</i> -Driven Diffuse Large B-cell Lymphoma Reveals Actionable Molecular Vulnerabilities. Blood Cancer Discovery, 2021, 2, 70-91.	5.0	21
8	Evolution of the Tumor Microenvironment throughout Progression and Transformation of EZH2 Mutant Follicular Lymphoma. Blood, 2021, 138, 446-446.	1.4	1
9	Epigenetic, Metabolic, and Immune Crosstalk in Germinal-Center-Derived B-Cell Lymphomas: Unveiling New Vulnerabilities for Rational Combination Therapies. Frontiers in Cell and Developmental Biology, 2021, 9, 805195.	3.7	7
10	Mutant EZH2 Induces a Pre-malignant Lymphoma Niche by Reprogramming the Immune Response. Cancer Cell, 2020, 37, 655-673.e11.	16.8	93
11	TBL1XR1 Mutations Drive Extranodal Lymphoma by Inducing a Pro-tumorigenic Memory Fate. Cell, 2020, 182, 297-316.e27.	28.9	63
12	Epigenetic Mechanisms in Leukemias and Lymphomas. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a034959.	6.2	14
13	The Tumor Associated Antigen PRAME Exhibits Dualistic Functions That Are Targetable in Diffuse Large B-Cell Lymphoma. Blood, 2020, 136, 34-34.	1.4	1
14	ExÂvivo synthetic immune tissues with T cell signals for differentiating antigen-specific, high affinity germinal center B cells. Biomaterials, 2019, 198, 27-36.	11.4	39
15	Molecular and Genetic Characterization of MHC Deficiency Identifies EZH2 as Therapeutic Target for Enhancing Immune Recognition. Cancer Discovery, 2019, 9, 546-563.	9.4	213
16	Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nature Communications, 2019, 10, 1874.	12.8	63
17	EZH2 Gain-of-Function Mutations Generate a Lymphoma-Permissive Immune Niche. Blood, 2019, 134, 2768-2768.	1.4	3
18	Enhancer of zeste homolog 2 (EZH2) inhibitors. Leukemia and Lymphoma, 2018, 59, 1574-1585.	1.3	143

Wendy Béguelin

#	Article	IF	CITATIONS
19	TET2 Deficiency Causes Germinal Center Hyperplasia, Impairs Plasma Cell Differentiation, and Promotes B-cell Lymphomagenesis. Cancer Discovery, 2018, 8, 1632-1653.	9.4	120
20	Modular Immune Organoids with Integrin Ligand Specificity Differentially Regulate Ex Vivo B Cell Activation. ACS Biomaterials Science and Engineering, 2017, 3, 214-225.	5.2	28
21	EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nature Communications, 2017, 8, 877.	12.8	132
22	Genetic and epigenetic inactivation of <i>SESTRIN1</i> controls mTORC1 and response to EZH2 inhibition in follicular lymphoma. Science Translational Medicine, 2017, 9, .	12.4	52
23	EZH2 and BCL6 Cooperate to Assemble CBX8-BCOR Complex to Repress Bivalent Promoters, Mediate Germinal Center Formation and Lymphomagenesis. Cancer Cell, 2016, 30, 197-213.	16.8	200
24	Multi-tiered Reorganization of the Genome during B Cell Affinity Maturation Anchored by a Germinal Center-Specific Locus Control Region. Immunity, 2016, 45, 497-512.	14.3	112
25	Reply to "Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status". Nature Medicine, 2016, 22, 578-579.	30.7	7
26	EZH2 Enables the Proliferation of Germinal Center B Cells and DLBCL through a Rb-E2F1 Positive Feedback Loop Involving Repression of CDKN1A. Blood, 2016, 128, 734-734.	1.4	1
27	Loss of BAP1 function leads to EZH2-dependent transformation. Nature Medicine, 2015, 21, 1344-1349.	30.7	297
28	A Chromatin Reader That Acts As a Key to Lock in and Coordinate Recruitment of Transcription Factors and a Novel Polycomb Complex to Bivalent Chromatin Thus Driving Formation of Germinal Centers and B-Cell Lymphomas. Blood, 2015, 126, 434-434.	1.4	0
29	BAP1 Loss Results in EZH2-Dependent Transformation in Myelodysplastic Syndromes. Blood, 2015, 126, 713-713.	1.4	0
30	Hematopoietic Stem Cell Origin of <i>BRAF</i> V600E Mutations in Hairy Cell Leukemia. Science Translational Medicine, 2014, 6, 238ra71.	12.4	102
31	EZH2 Is Required for Germinal Center Formation and Somatic EZH2 Mutations Promote Lymphoid Transformation. Cancer Cell, 2013, 23, 677-692.	16.8	706
32	EZH2 and BCL6 Cooperate To Create The Germinal Center B-Cell Phenotype and Induce Lymphomas Through Formation and Repression Of Bivalent Chromatin Domains. Blood, 2013, 122, 1-1.	1.4	23