
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4738903/publications.pdf Version: 2024-02-01

LULIETTE MICNOT

#	Article	IF	CITATIONS
1	Barrier layers and tropical Atlantic SST biases in coupled GCMs. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 60, 885.	1.7	65
2	Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway. Journal of Climate, 2022, 35, 2111-2131.	3.2	3
3	Predictable Variations of the Carbon Sinks and Atmospheric CO ₂ Growth in a Multiâ€Model Framework. Geophysical Research Letters, 2021, 48, e2020GL090695.	4.0	17
4	A realistic Greenland ice sheet and surrounding glaciers and ice caps melting in a coupled climate model. Climate Dynamics, 2021, 57, 2467-2489.	3.8	7
5	The Tuning Strategy of IPSLâ€CM6A‣R. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002340.	3.8	10
6	Sensitivity of the Atlantic meridional overturning circulation and climate to tropical Indian Ocean warming. Climate Dynamics, 2021, 57, 2433-2451.	3.8	6
7	Skilful decadal predictions of subpolar North Atlantic SSTs using CMIP model-analogues. Environmental Research Letters, 2021, 16, 064090.	5.2	7
8	Toward Consistent Observational Constraints in Climate Predictions and Projections. Frontiers in Climate, 2021, 3, .	2.8	18
9	On the risk of abrupt changes in the North Atlantic subpolar gyre in CMIP6 models. Annals of the New York Academy of Sciences, 2021, 1504, 187-201.	3.8	11
10	Systematic investigation of skill opportunities in decadal prediction of air temperature over Europe. Climate Dynamics, 2021, 57, 3245-3263.	3.8	2
11	Presentation and Evaluation of the IPSLâ€CM6A‣R Ensemble of Extended Historical Simulations. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002565.	3.8	18
12	Skillful decadal prediction of unforced southern European summer temperature variations. Environmental Research Letters, 2021, 16, 104017.	5.2	9
13	Improved Decadal Predictions of North Atlantic Subpolar Gyre SST in CMIP6. Geophysical Research Letters, 2021, 48, e2020GL091307.	4.0	43
14	Increased risk of near term global warming due to a recent AMOC weakening. Nature Communications, 2021, 12, 6108.	12.8	25
15	Satelliteâ€Based Sea Surface Salinity Designed for Ocean and Climate Studies. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017676.	2.6	29
16	North Atlantic climate far more predictable than models imply. Nature, 2020, 583, 796-800.	27.8	158
17	Impact of Climate Change on Surface Stirring and Transport in the Mediterranean Sea. Geophysical Research Letters, 2020, 47, e2020GL089941.	4.0	9
18	Alleviation of an Arctic Sea Ice Bias in a Coupled Model Through Modifications in the Subgridâ€Scale Orographic Parameterization. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002111.	3.8	5

#	Article	IF	CITATIONS
19	Reconstructing climatic modes of variability from proxy records using ClimIndRec version 1.0. Geoscientific Model Development, 2020, 13, 841-858.	3.6	10
20	Is deoxygenation detectable before warming in the thermocline?. Biogeosciences, 2020, 17, 1877-1895.	3.3	3
21	Presentation and Evaluation of the IPSL M6A‣R Climate Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002010.	3.8	541
22	Tropical Atlantic Mixed Layer Buoyancy Seasonality: Atmospheric and Oceanic Physical Processes Contributions. Atmosphere, 2020, 11, 649.	2.3	0
23	Aerosolâ€Forced AMOC Changes in CMIP6 Historical Simulations. Geophysical Research Letters, 2020, 47, e2020GL088166.	4.0	85
24	Advances in reconstructing the AMOC using sea surface observations of salinity. Climate Dynamics, 2020, 55, 975-992.	3.8	7
25	Towards an objective assessment of climate multi-model ensembles – a case study: the Senegalo-Mauritanian upwelling region. Geoscientific Model Development, 2020, 13, 2723-2742.	3.6	5
26	IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations. Geoscientific Model Development, 2020, 13, 3011-3053.	3.6	55
27	Modern drought conditions in western Sahel unprecedented in the past 1600Âyears. Climate Dynamics, 2019, 52, 1949-1964.	3.8	13
28	Assessment of time of emergence of anthropogenic deoxygenation and warming: insights from a CESM simulation from 850 to 2100 CE. Biogeosciences, 2019, 16, 1755-1780.	3.3	10
29	Weakening of the Senegalo–Mauritanian upwelling system under climate change. Climate Dynamics, 2019, 53, 4447-4473.	3.8	22
30	Generation of Rossby waves off the Cape Verde Peninsula: the role of the coastline. Ocean Science, 2019, 15, 1667-1690.	3.4	4
31	Preindustrial Control Simulations With HadGEM3â€GC3.1 for CMIP6. Journal of Advances in Modeling Earth Systems, 2018, 10, 3049-3075.	3.8	62
32	Atlantic Control of the Late Nineteenth-Century Sahel Humid Period. Journal of Climate, 2018, 31, 8225-8240.	3.2	20
33	North Atlantic Ocean Internal Decadal Variability: Role of the Mean State and Oceanâ€Atmosphere Coupling. Journal of Geophysical Research: Oceans, 2018, 123, 5949-5970.	2.6	20
34	The impacts of oceanic deep temperature perturbations in the North Atlantic on decadal climate variability and predictability. Climate Dynamics, 2018, 51, 2341-2357.	3.8	7
35	On the robustness of near term climate predictability regarding initial state uncertainties. Climate Dynamics, 2017, 48, 353-366.	3.8	6
36	Impact of explosive volcanic eruptions on the main climate variability modes. Global and Planetary Change, 2017, 150, 24-45.	3.5	88

JULIETTE MIGNOT

#	Article	IF	CITATIONS
37	Estimating Changes in Global Temperature since the Preindustrial Period. Bulletin of the American Meteorological Society, 2017, 98, 1841-1856.	3.3	238
38	Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature Communications, 2017, 8, 778.	12.8	132
39	Reconstructing extreme AMOC events through nudging of the ocean surface: a perfect model approach. Climate Dynamics, 2017, 49, 3425-3441.	3.8	9
40	Tentative reconstruction of the 1998–2012 hiatus in global temperature warming using the IPSL–CM5A–LR climate model. Comptes Rendus - Geoscience, 2017, 349, 369-379.	1.2	4
41	Decadal prediction skill in the ocean with surface nudging in the IPSL-CM5A-LR climate model. Climate Dynamics, 2016, 47, 1225-1246.	3.8	21
42	On the seasonal variations of salinity of the tropical <scp>A</scp> tlantic mixed layer. Journal of Geophysical Research: Oceans, 2015, 120, 4441-4462.	2.6	26
43	Climate and carbon cycle dynamics in a CESM simulation from 850 to 2100 CE. Earth System Dynamics, 2015, 6, 411-434.	7.1	52
44	Using simulations of the last millennium to understand climate variability seen in palaeo-observations: similar variation of Iceland–Scotland overflow strength and Atlantic Multidecadal Oscillation. Climate of the Past, 2015, 11, 203-216.	3.4	10
45	On the spatial coherence of rainfall over the Saloum delta (Senegal) from seasonal to decadal time scales. Frontiers in Earth Science, 2015, 3, .	1.8	9
46	Growth and decay of the equatorial Atlantic SST mode by means of closed heat budget in a coupled general circulation model. Frontiers in Earth Science, 2015, 3, .	1.8	8
47	Multiple Equilibria as a Possible Mechanism for Decadal Variability in the North Atlantic Ocean. Journal of Climate, 2015, 28, 8907-8922.	3.2	11
48	On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet melting in projections: a multi-model assessment. Climate Dynamics, 2015, 44, 3261-3279.	3.8	53
49	Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nature Communications, 2015, 6, 6545.	12.8	101
50	Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic. Progress in Oceanography, 2015, 137, 237-249.	3.2	39
51	Effect of surface restoring on subsurface variability in a climate model during 1949–2005. Climate Dynamics, 2015, 44, 2333-2349.	3.8	9
52	Reconstructing the subsurface ocean decadal variability using surface nudging in a perfect model framework. Climate Dynamics, 2015, 44, 315-338.	3.8	30
53	Le climat du dernier millénaire. La Météorologie, 2015, 8, 36.	0.5	3
54	The role of subpolar deep water formation and Nordic Seas overflows in simulated multidecadal variability of the Atlantic meridional overturning circulation. Ocean Science, 2014, 10, 227-241.	3.4	24

#	Article	IF	CITATIONS
55	Multiyear predictability of tropical marine productivity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11646-11651.	7.1	61
56	Decadal Climate Prediction: An Update from the Trenches. Bulletin of the American Meteorological Society, 2014, 95, 243-267.	3.3	454
57	A multi-model comparison of Atlantic multidecadal variability. Climate Dynamics, 2014, 43, 2333-2348.	3.8	126
58	Labrador current variability over the last 2000 years. Earth and Planetary Science Letters, 2014, 400, 26-32.	4.4	49
59	Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Climate Dynamics, 2013, 41, 695-720.	3.8	90
60	Presentation and analysis of the IPSL and CNRM climate models used in CMIP5. Climate Dynamics, 2013, 40, 2089-2089.	3.8	25
61	Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, 2013, 40, 2123-2165.	3.8	1,425
62	Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A-LR model. Climate Dynamics, 2013, 40, 2359-2380.	3.8	46
63	A 20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM. Climate Dynamics, 2013, 40, 619-636.	3.8	65
64	On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5: A mean state comparison. Ocean Modelling, 2013, 72, 167-184.	2.4	35
65	Initialisation and predictability of the AMOC over the last 50Âyears in a climate model. Climate Dynamics, 2013, 40, 2381-2399.	3.8	72
66	Sea surface temperature and sea ice variability in the subpolar North Atlantic from explosive volcanism of the late thirteenth century. Geophysical Research Letters, 2013, 40, 5526-5530.	4.0	14
67	Comment on "Multiyear Prediction of Monthly Mean Atlantic Meridional Overturning Circulation at 26.5°N― Science, 2012, 338, 604-604.	12.6	8
68	Water mass transformation and the North Atlantic Current in three multicentury climate model simulations. Journal of Geophysical Research, 2012, 117, .	3.3	24
69	On the formation of barrier layers and associated vertical temperature inversions: A focus on the northwestern tropical Atlantic. Journal of Geophysical Research, 2012, 117, .	3.3	52
70	Variability of the Atlantic meridional overturning circulation in the last millennium and two IPCC scenarios. Climate Dynamics, 2012, 38, 1925-1947.	3.8	27
71	Dynamics of decadal variability in the Atlantic subpolar gyre: a stochastically forced oscillator. Climate Dynamics, 2012, 39, 461-474.	3.8	26
72	Sea surface temperature variability in the subpolar Atlantic over the last two millennia. Paleoceanography, 2011, 26, .	3.0	78

#	Article	IF	CITATIONS
73	Volcanic impact on the Atlantic Ocean over the last millennium. Climate of the Past, 2011, 7, 1439-1455.	3.4	58
74	Links between the Southern Annular Mode and the Atlantic Meridional Overturning Circulation in a Climate Model. Journal of Climate, 2011, 24, 624-640.	3.2	23
75	Sensitivity of North Atlantic subpolar gyre and overturning to stratification-dependent mixing: response to global warming. Climate Dynamics, 2010, 34, 661-668.	3.8	2
76	Local and remote impacts of a tropical Atlantic salinity anomaly. Climate Dynamics, 2010, 35, 1133-1147.	3.8	20
77	Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dynamics, 2010, 34, 1-26.	3.8	235
78	Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model. Climate of the Past, 2009, 5, 551-570.	3.4	70
79	On the porosity of barrier layers. Ocean Science, 2009, 5, 379-387.	3.4	22
80	Impact of Freshwater Release in the North Atlantic under Different Climate Conditions in an OAGCM. Journal of Climate, 2009, 22, 6377-6403.	3.2	94
81	Sensitivity of the Atlantic Ocean circulation to a hydraulic overflow parameterisation in a coarse resolution model: Response of the subpolar gyre. Ocean Modelling, 2009, 27, 130-142.	2.4	23
82	The Role of Stratification-Dependent Mixing for the Stability of the Atlantic Overturning in a Global Climate Model*. Journal of Physical Oceanography, 2007, 37, 2672-2681.	1.7	20
83	Atlantic Subsurface Temperatures: Response to a Shutdown of the Overturning Circulation and Consequences for Its Recovery. Journal of Climate, 2007, 20, 4884-4898.	3.2	92
84	The Role of Northern Sea Ice Cover for the Weakening of the Thermohaline Circulation under Global Warming. Journal of Climate, 2007, 20, 4160-4171.	3.2	42
85	Control of salinity on the mixed layer depth in the world ocean: 1. General description. Journal of Geophysical Research, 2007, 112, .	3.3	213
86	Control of salinity on the mixed layer depth in the world ocean: 2. Tropical areas. Journal of Geophysical Research, 2007, 112, .	3.3	122
87	A Decomposition of the Atlantic Meridional Overturning Circulation into Physical Components Using Its Sensitivity to Vertical Diffusivity. Journal of Physical Oceanography, 2006, 36, 636-650.	1.7	29
88	Tropical versus high latitude freshwater influence on the Atlantic circulation. Climate Dynamics, 2006, 27, 715-725.	3.8	12
89	The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions. Climate Dynamics, 2005, 25, 237-263.	3.8	93
90	The Variability of the Atlantic Meridional Overturning Circulation, the North Atlantic Oscillation, and the El NiA±o–Southern Oscillation in the Bergen Climate Model. Journal of Climate, 2005, 18, 2361-2375.	3.2	40

#	Article	IF	CITATIONS
91	Interannual to interdecadal variability of sea surface salinity in the Atlantic and its link to the atmosphere in a coupled model. Journal of Geophysical Research, 2004, 109, .	3.3	38
92	On the interannual variability of surface salinity in the Atlantic. Climate Dynamics, 2003, 20, 555-565.	3.8	62
93	The surface heat flux feedback. Part II: direct and indirect estimates in the ECHAM4/OPA8 coupled GCM. Climate Dynamics, 2002, 19, 649-655.	3.8	23