
Motoaki Iwaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4736517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved Efficiency of 255–280 nm AlGaN-Based Light-Emitting Diodes. Applied Physics Express, 2010, 3, 061004.	2.4	233
2	Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN. Japanese Journal of Applied Physics, 1998, 37, L316-L318.	1.5	184
3	350.9 nm UV Laser Diode Grown on Low-Dislocation-Density AlGaN. Japanese Journal of Applied Physics, 2004, 43, L499-L500.	1.5	151
4	Stress and Defect Control in GaN Using Low Temperature Interlayers. Japanese Journal of Applied Physics, 1998, 37, L1540-L1542.	1.5	150
5	Solar-Blind UV Photodetectors Based on GaN/AlGaN p-i-n Photodiodes. Japanese Journal of Applied Physics, 2000, 39, L387-L389.	1.5	108
6	Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. Journal of Crystal Growth, 2007, 298, 257-260.	1.5	104
7	High-Temperature Metal-Organic Vapor Phase Epitaxial Growth of AlN on Sapphire by Multi Transition Growth Mode Method Varying V/III Ratio. Japanese Journal of Applied Physics, 2006, 45, 8639-8643.	1.5	101
8	Dislocations in AlN Epilayers Grown on Sapphire Substrate by High-Temperature Metal-Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2007, 46, 1458-1462.	1.5	90
9	Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure. Journal of Crystal Growth, 2001, 223, 83-91.	1.5	82
10	Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors. Applied Physics Express, 2016, 9, 102101.	2.4	78
11	Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio. Journal of Crystal Growth, 2007, 300, 136-140.	1.5	66
12	Impact of high-temperature growth by metal-organic vapor phase epitaxy on microstructure of AlN on 6H-SiC substrates. Journal of Crystal Growth, 2008, 310, 2308-2313.	1.5	65
13	Control of crystallinity of GaN grown on sapphire substrate by metalorganic vapor phase epitaxy using in situ X-ray diffraction monitoring method. Journal of Crystal Growth, 2014, 401, 367-371.	1.5	60
14	Realization of crack-free and high-quality thick AlxGa1â^'xN for UV optoelectronics using low-temperature interlayer. Applied Surface Science, 2000, 159-160, 405-413.	6.1	56
15	Novel UV devices on high-quality AlGaN using grooved underlying layer. Journal of Crystal Growth, 2009, 311, 2860-2863.	1.5	55
16	High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN. Journal of Crystal Growth, 2008, 310, 2326-2329.	1.5	54
17	Realization of Nitride-Based Solar Cell on Freestanding GaN Substrate. Applied Physics Express, 2010, 3, 111001.	2.4	52
18	Improvement of Light Extraction Efficiency for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes. Japanese Journal of Applied Physics, 2011, 50, 122101.	1.5	52

Μοτοακι Ιwaya

#	Article	IF	CITATIONS
19	GaInN-Based Tunnel Junctions in n–p–n Light Emitting Diodes. Japanese Journal of Applied Physics, 2013, 52, 08JH06.	1.5	51
20	Low-Intensity Ultraviolet Photodetectors Based on AlGaN. Japanese Journal of Applied Physics, 1999, 38, L487-L489.	1.5	45
21	Influence of High Temperature in the Growth of Low Dislocation Content AlN Bridge Layers on Patterned 6H-SiC Substrates by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2007, 46, L307-L310.	1.5	45
22	Flat (11ar20) GaN Thin Film on Precisely Offset-Controlled (1ar102) Sapphire Substrate. Japanese Journal of Applied Physics, 2005, 44, 7418-7420.	1.5	44
23	Control of p-Type Conduction in a-Plane GaN Grown on Sapphire r-Plane Substrate. Japanese Journal of Applied Physics, 2005, 44, L1516-L1518.	1.5	44
24	Highâ€performance UV emitter grown on highâ€crystallineâ€quality AlGaN underlying layer. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1199-1204.	1.8	41
25	High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure. Japanese Journal of Applied Physics, 2005, 44, 7414-7417.	1.5	39
26	High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. Applied Physics Letters, 2017, 111, .	3.3	39
27	Ultraviolet-B band lasers fabricated on highly relaxed thick Al _{0.55} Ca _{0.45} N films grown on various types of AlN wafers. Japanese Journal of Applied Physics, 2019, 58, SC1052.	1.5	36
28	AlGaN-based UV-B laser diode with a high optical confinement factor. Applied Physics Letters, 2021, 118, .	3.3	36
29	Microscopic Investigation of Al0.43Ga0.57N on Sapphire. Japanese Journal of Applied Physics, 1999, 38, L1515-L1518.	1.5	33
30	Fracture of AlxGa1-xN/GaN Heterostructure Compositional and Impurity Dependence Japanese Journal of Applied Physics, 2001, 40, L195-L197.	1.5	33
31	Laser diode of 350.9nm wavelength grown on sapphire substrate by MOVPE. Journal of Crystal Growth, 2004, 272, 270-273.	1.5	33
32	Light confinement and high current density in UVB laser diode structure using Al composition-graded p-AlGaN cladding layer. Applied Physics Letters, 2019, 114, .	3.3	33
33	One-sidewall-seeded epitaxial lateral overgrowth of a-plane GaN by metalorganic vapor-phase epitaxy. Journal of Crystal Growth, 2009, 311, 2887-2890.	1.5	31
34	Development of AlN/diamond heterojunction field effect transistors. Diamond and Related Materials, 2012, 24, 206-209.	3.9	31
35	Low-Leakage-Current Enhancement-Mode AlGaN/GaN Heterostructure Field-Effect Transistor Using p-Type Gate Contact. Japanese Journal of Applied Physics, 2006, 45, L319-L321.	1.5	30
36	Compensation effect of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 2010, 312, 3131-3135.	1.5	30

Μοτοακί Ιωαγά

#	Article	IF	CITATIONS
37	Growth of Highâ€Quality AlN and AlGaN Films on Sputtered AlN/Sapphire Templates via Highâ€Temperature Annealing. Physica Status Solidi (B): Basic Research, 2018, 255, 1700506.	1.5	30
38	High-Power UV-Light-Emitting Diode on Sapphire. Japanese Journal of Applied Physics, 2003, 42, 400-403.	1.5	29
39	Control of Threshold Voltage of Enhancement-Mode AlxGa1-xN/GaN Junction Heterostructure Field-Effect Transistors Using p-GaN Gate Contact. Japanese Journal of Applied Physics, 2007, 46, 115-118.	1.5	28
40	Extremely Low-Resistivity and High-Carrier-Concentration Si-Doped Al _{0.05} Ga _{0.95} N. Applied Physics Express, 2013, 6, 121002.	2.4	27
41	GalnNâ€based tunnel junctions with high InN mole fractions grown by MOVPE. Physica Status Solidi (B): Basic Research, 2015, 252, 1127-1131.	1.5	27
42	GalnN-based tunnel junctions with graded layers. Applied Physics Express, 2016, 9, 081005.	2.4	27
43	Thermodynamic Aspects of Growth of AlGaN by High-Temperature Metal Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2006, 45, 2502-2504.	1.5	26
44	High On/Off Ratio in Enhancement-Mode AlxGa1-xN/GaN Junction Heterostructure Field-Effect Transistors with P-Type GaN Gate Contact. Japanese Journal of Applied Physics, 2006, 45, L1048-L1050.	1.5	25
45	High-quality AlN film grown on a nanosized concave–convex surface sapphire substrate by metalorganic vapor phase epitaxy. Applied Physics Letters, 2017, 111, .	3.3	23
46	450Ânm GalnN ridge stripe laser diodes with AlInN/AlGaN multiple cladding layers. Japanese Journal of Applied Physics, 2019, 58, SCCC28.	1.5	23
47	Effect of AlGaN undershell on the cathodoluminescence properties of coaxial GaInN/GaN multiple-quantum-shells nanowires. Nanoscale, 2019, 11, 18746-18757.	5.6	23
48	Anisotropically Biaxial Strain ina-Plane AlGaN on GaN Grown onr-Plane Sapphire. Japanese Journal of Applied Physics, 2006, 45, 2509-2513.	1.5	22
49	White light-emitting diode based on fluorescent SiC. Thin Solid Films, 2012, 522, 23-25.	1.8	21
50	The dependence of AlN molar fraction of AlGaN in wet etching by using tetramethylammonium hydroxide aqueous solution. Japanese Journal of Applied Physics, 2019, 58, SCCC30.	1.5	21
51	Determination of internal quantum efficiency in GaInN-based light-emitting diode under electrical injection: carrier recombination dynamics analysis. Applied Physics Express, 2019, 12, 032006.	2.4	21
52	Growth and Characterization of Core-Shell Structures Consisting of GaN Nanowire Core and GalnN/GaN Multi-Quantum Shell. ECS Journal of Solid State Science and Technology, 2020, 9, 015007.	1.8	21
53	Strain Relaxation Mechanisms in AlGaN Epitaxy on AlN Templates. Applied Physics Express, 2010, 3, 111003.	2.4	20
54	Analysis of strain relaxation process in GalnN/GaN heterostructure by in situ Xâ€ray diffraction monitoring during metalorganic vaporâ€phase epitaxial growth. Physica Status Solidi - Rapid Research Letters, 2013, 7, 211-214.	2.4	20

Μοτοακί Ιωαγά

#	Article	IF	CITATIONS
55	Photoresponse and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer. Japanese Journal of Applied Physics, 2001, 40, L498-L501.	1.5	18
56	Epitaxial lateral overgrowth of AlxGa1â^'xN (x>0.2) on sapphire and its application to UV-B-light-emitting devices. Journal of Crystal Growth, 2007, 298, 265-267.	1.5	18
57	Relationship between misfit-dislocation formation and initial threading-dislocation density in GaInN/GaN heterostructures. Japanese Journal of Applied Physics, 2015, 54, 115501.	1.5	16
58	High Crystallinity and Highly Relaxed Al _{0.60} Ga _{0.40} N Films Using Growth Mode Control Fabricated on a Sputtered AlN Template with Highâ€Temperature Annealing. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900868.	1.8	16
59	Reduction of dislocation density in lattice-relaxed Al _{0.68} Ga _{0.32} N film grown on periodical 1 μm spacing AlN pillar concave-convex patterns and its effect on the performance of UV-B laser diodes. Applied Physics Express, 2022, 15, 031004.	2.4	16
60	Realization of low-dislocation-density, smooth surface, and thick GaInN films on m-plane GaN templates. Journal of Crystal Growth, 2008, 310, 3308-3312.	1.5	15
61	GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces. Japanese Journal of Applied Physics, 2019, 58, SCCC01.	1.5	15
62	Improved Uniform Current Injection into Coreâ€Shellâ€Type GaInN Nanowire Lightâ€Emitting Diodes by Optimizing Growth Condition and Indiumâ€Tinâ€Oxide Deposition. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900715.	1.8	15
63	Controlled synthesis of nonpolar GalnN/GaN multiple-quantum-shells on GaN nanowires by metal-organic chemical vapour deposition. Applied Surface Science, 2020, 509, 145271.	6.1	15
64	Realization of High-Crystalline-Quality Thick m-Plane GaInN Film on 6H-SiC Substrate by Epitaxial Lateral Overgrowth. Japanese Journal of Applied Physics, 2007, 46, L948.	1.5	14
65	High hole concentration in Mg-doped a-plane Ga1â^'xInxNâ€^(<x<0.30) grown="" on="" r-plane<br="">sapphire substrate by metalorganic vapor phase epitaxy. Applied Physics Letters, 2008, 93, .</x<0.30)>	3.3	14
66	Injection efficiency in AlGaNâ€based UV laser diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2384-2386.	0.8	14
67	Characterization and optimization of sputtered AIN buffer layer on r-plane sapphire substrate to improve the crystalline quality of nonpolar a-plane GaN. Journal of Crystal Growth, 2017, 480, 90-95.	1.5	14
68	Hybrid simulation of light extraction efficiency in multi-quantum-shell (MQS) NW (nanowire) LED with a current diffusion layer. Japanese Journal of Applied Physics, 2019, 58, SCCC17.	1.5	14
69	Low-threshold-current (~85 mA) of AlGaN-based UV-B laser diode with refractive-index waveguide structure. Applied Physics Express, 2021, 14, 094009.	2.4	14
70	n-type GaN surface etched green light-emitting diode to reduce non-radiative recombination centers. Applied Physics Letters, 2021, 118, .	3.3	14
71	Identification of multi-color emission from coaxial GaInN/GaN multiple-quantum-shell nanowire LEDs. Nanoscale Advances, 2021, 4, 102-110.	4.6	14
72	Reduction in threshold current density of 355 nm UV laser diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1564-1568.	0.8	13

Μοτοακί Ιωαγά

#	Article	IF	CITATIONS
73	Modified Shockley Equation for GaInN-Based Light-Emitting Diodes: Origin of the Power- Efficiency Degradation Under High Current Injection. IEEE Journal of Quantum Electronics, 2019, 55, 1-11.	1.9	13
74	Development of Monolithically Grown Coaxial GaInN/GaN Multiple Quantum Shell Nanowires by MOCVD. Nanomaterials, 2020, 10, 1354.	4.1	13
75	Recent development of UV-B laser diodes. Japanese Journal of Applied Physics, 2022, 61, 040501.	1.5	13
76	X-ray diffraction reciprocal lattice space mapping ofa-plane AlGaN on GaN. Physica Status Solidi (B): Basic Research, 2006, 243, 1524-1528.	1.5	12
77	Relaxation and recovery processes of AlxGa1â^'xN grown on AlN underlying layer. Journal of Crystal Growth, 2009, 311, 2850-2852.	1.5	12
78	Fabrication of Nonpolar \$a\$-Plane Nitride-Based Solar Cell on \$r\$-Plane Sapphire Substrate. Applied Physics Express, 2011, 4, 101001.	2.4	12
79	Properties of nitrideâ€based photovoltaic cells under concentrated light illumination. Physica Status Solidi - Rapid Research Letters, 2012, 6, 145-147.	2.4	12
80	Sapphire substrate off-angle and off-direction dependences on characteristics of AlGaN-based deep ultraviolet light-emitting diodes. Japanese Journal of Applied Physics, 2019, 58, SC1025.	1.5	12
81	Analysis of Spontaneous Subpeak Emission from the Guide Layers of the Ultravioletâ€B Laser Diode Structure Containing Compositionâ€Graded pâ€AlGaN Cladding Layers. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900864.	1.8	12
82	GaN-based vertical cavity surface emitting lasers with lateral optical confinements and conducting distributed Bragg reflectors. Japanese Journal of Applied Physics, 2020, 59, SGGE08.	1.5	12
83	Reduction of dislocation density in Al0.6Ga0.4N film grown on sapphire substrates using annealed sputtered AlN templates and its effect on UV-B laser diodes. Journal of Crystal Growth, 2021, 575, 126325.	1.5	12
84	Room-temperature continuous-wave operations of GaN-based vertical-cavity surface-emitting lasers with buried GaInN tunnel junctions. Applied Physics Express, 2020, 13, 111003.	2.4	12
85	High-quality AlInN/GaN distributed Bragg reflectors grown by metalorganic vapor phase epitaxy. Applied Physics Express, 2020, 13, 125504.	2.4	12
86	Improvement of 650-nm red-emitting GaIn0.17N/GaIn0.38N multiple quantum wells on ScAlMgO4 (0001) substrate by suppressing impurity diffusion/penetration. Applied Physics Letters, 2022, 120, .	3.3	12
87	High-quality Al0.12Ga0.88N film with low dislocation density grown on facet-controlled Al0.12Ga0.88N by MOVPE. Journal of Crystal Growth, 2004, 272, 377-380.	1.5	11
88	Realization of extreme light extraction efficiency for mothâ€eye LEDs on SiC substrate using highâ€reflection electrode. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2180-2182.	0.8	11
89	Characterization of nonpolar a-plane GaN epi-layers grown on high-density patterned r-plane sapphire substrates. Journal of Crystal Growth, 2018, 484, 50-55.	1.5	11
90	Effects of Mg and Si doping in the guide layers of AlGaN-based ultraviolet-B band lasers. Journal of Crystal Growth, 2020, 535, 125537.	1.5	11

Μοτοακί Ιwaya

#	Article	IF	CITATIONS
91	Color-tunable emission in coaxial GaInN/GaN multiple quantum shells grown on three-dimensional nanostructures. Applied Surface Science, 2021, 539, 148279.	6.1	11
92	Enhanced Device Performance of GalnN-Based Green Light-Emitting Diode with Sputtered AlN Buffer Layer. Applied Sciences (Switzerland), 2019, 9, 788.	2.5	10
93	Thermodynamic analysis of GaInN-based light-emitting diodes operated by quasi-resonant optical excitation. Journal of Applied Physics, 2020, 128, .	2.5	10
94	Correlation between Optical and Structural Characteristics in Coaxial GaInN/GaN Multiple Quantum Shell Nanowires with AlGaN Spacers. ACS Applied Materials & Interfaces, 2020, 12, 51082-51091.	8.0	10
95	Analysis of carrier injection efficiency of AlGaN UV-B laser diodes based on the relationship between threshold current density and cavity length. Japanese Journal of Applied Physics, 2021, 60, 074002.	1.5	10
96	Structural and optical impacts of AlGaN undershells on coaxial GaInN/GaN multiple-quantum-shells nanowires. Nanophotonics, 2020, 9, 101-111.	6.0	10
97	In-plane GaN/AlGaN heterostructure fabricated by selective mass transport planar technology. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 139-142.	3.5	9
98	Relaxation of misfit-induced stress in nitride-based heterostructures. Journal of Crystal Growth, 2002, 237-239, 947-950.	1.5	9
99	Electrical properties of relaxed p-GaN/p-AlGaN superlattices and their application in ultraviolet-B light-emitting devices. Japanese Journal of Applied Physics, 2019, 58, SC1016.	1.5	9
100	Fabrication of vertical AlGaN-based deep-ultraviolet light-emitting diodes operating at high current density (â^1⁄443 kA cm ^{â^'2}) using a laser liftoff method. Applied Physics Express, 2022, 15, 041006.	2.4	9
101	Centimeter-scale laser lift-off of an AlGaN UVB laser diode structure grown on nano-patterned AlN. Applied Physics Express, 2022, 15, 051004.	2.4	9
102	Control of stress and crystalline quality in GaInN films used for green emitters. Journal of Crystal Growth, 2008, 310, 4920-4922.	1.5	8
103	In situ X-ray diffraction monitoring of GalnN/GaN superlattice during organometalic vapor phase epitaxy growth. Journal of Crystal Growth, 2014, 393, 108-113.	1.5	8
104	Annealing of the sputtered AlN buffer layer on <i>r</i> â€plane sapphire and its effect on <i>a</i> â€plane GaN crystalline quality. Physica Status Solidi (B): Basic Research, 2017, 254, 1600723.	1.5	8
105	Tuning the Resonant Frequency of a Surface Plasmon by Double-Metallic Ag/Au Nanoparticles for High-Efficiency Green Light-Emitting Diodes. Applied Sciences (Switzerland), 2019, 9, 305.	2.5	8
106	Fabrication and Characterization of Multiquantum Shell Lightâ€Emitting Diodes with Tunnel Junction. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900774.	1.8	8
107	Emission characteristics of GaInN/GaN multiple quantum shell nanowire-based LEDs with different <i>p</i> -GaN growth conditions. Nanophotonics, 2021, 10, 3441-3450.	6.0	8
108	Effects of Mg dopant in Al-composition-graded Al _x Ga _{1â^'x} N (0.45Ââ‰Âx) on vertical electrical conductivity of ultrawide bandgap AlGaN p–n junction. Applied Physics Express, 2021, 14, 096503.	2.4	8

Μοτοακί Ιwaya

#	Article	IF	CITATIONS
109	Study on the Seeded Growth of AlN Bulk Crystals by Sublimation. Japanese Journal of Applied Physics, 2004, 43, 7448-7453.	1.5	7
110	In situ X-ray diffraction monitoring during metalorganic vapor phase epitaxy growth of low-temperature-GaN buffer layer. Journal of Crystal Growth, 2012, 361, 1-4.	1.5	7
111	Efficiency Enhancement Mechanism of an Underlying Layer in GalnNâ€Based Green Light–Emitting Diodes. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900713.	1.8	7
112	Morphology Control and Crystalline Quality of p-Type GaN Shells Grown on Coaxial GaInN/GaN Multiple Quantum Shell Nanowires. ACS Applied Materials & Interfaces, 2021, 13, 54486-54496.	8.0	7
113	CalnNâ€based solar cells using GalnN/GalnN superlattices. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2463-2465.	0.8	6
114	Dislocation density dependence of stimulated emission characteristics in AlGaN/Al multiquantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1537-1540.	0.8	6
115	High quality Al _{0.99} Ga _{0.01} N layers on sapphire substrates grown at 1150 °C by metalorganic vapor phase epitaxy. Japanese Journal of Applied Physics, 2017, 56, 015504.	1.5	6
116	Improvement of emission efficiency with a sputtered AlN buffer layer in GaInN-based green light-emitting diodes. Japanese Journal of Applied Physics, 2019, 58, SC1040.	1.5	6
117	MOVPE growth of n-GaN cap layer on GaInN/GaN multi-quantum shell LEDs. Journal of Crystal Growth, 2020, 539, 125571.	1.5	6
118	Room temperature pulsed operation of nitride nanowire-based multi-quantum shell laser diodes by MOVPE. Applied Physics Express, 2021, 14, 074004.	2.4	6
119	Performance of GaN-Based Semiconductor Laser with Spectral Broadening due to Compositional Inhomogeneity in GalnN Active Layer. Japanese Journal of Applied Physics, 2000, 39, 390-392.	1.5	5
120	Impact of H2-Preannealing of the Sapphire Substrate on the Crystallinity of Low-Temperature-Deposited AlN Buffer Layer. Japanese Journal of Applied Physics, 2005, 44, 3913-3917.	1.5	5
121	Homoepitaxial growth of AlN layers on freestanding AlN substrate by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 2014, 390, 46-50.	1.5	5
122	Characterizations of GaN nanowires and GalnN/GaN multi-quantum shells grown by MOVPE. Japanese Journal of Applied Physics, 2020, 59, SGGE05.	1.5	5
123	Crystal Growth and Characterization of n-GaN in a Multiple Quantum Shell Nanowire-Based Light Emitter with a Tunnel Junction. ACS Applied Materials & Interfaces, 2021, 13, 37883-37892.	8.0	5
124	Nitrideâ€based heteroâ€fieldâ€effectâ€ŧransistorâ€ŧype photosensors with extremely high photosensitivity. Physica Status Solidi - Rapid Research Letters, 2013, 7, 215-217.	2.4	4
125	Optimization of indium tin oxide layer thickness for surface-plasmon-enhanced green light-emitting diodes. Japanese Journal of Applied Physics, 2019, 58, SCCC27.	1.5	4
126	Photoluminescence Characterization of Fluorescent Sic with High Boron and Nitrogen Concentrations. Materials Science Forum, 0, 1004, 265-271.	0.3	4

Μοτοακι Ιwaya

#	Article	IF	CITATIONS
127	Activation energy of Mg in <i>a</i> â€plane Ga _{1–<i>x</i>} In <i>_x</i> N (0 <) Tj ETQ	9110.78	43314 rgBT
128	Growth of thick GaInN on grooved (101Â ⁻ 1Â ⁻) GaN/(101Â ⁻ 2Â ⁻) 4H-SiC. Journal of Crystal Growth, 2009, 311, 2926-2928.	1.5	3
129	AlN and AlGaN by MOVPE for UV Light Emitting Devices. Materials Science Forum, 2008, 590, 175-210.	0.3	2
130	InGaN growth with various InN mole fractions on m-plane ZnO substrate by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 2009, 311, 2929-2932.	1.5	2
131	Influence of trap level on an Al0.6Ga0.4N/Al0.5Ga0.5N metal—semiconductor—metal UV photodetector. Japanese Journal of Applied Physics, 2019, 58, SCCC26.	1.5	2
132	Improved Reverse Leakage Current in GalnN-Based LEDs With a Sputtered AlN Buffer Layer. IEEE Photonics Technology Letters, 2019, 31, 1971-1974.	2.5	2
133	In-situ curvature measurements of AlInN/GaN distributed Bragg reflectors during growths containing substrate temperature ramping steps. Journal of Crystal Growth, 2020, 531, 125357.	1.5	2
134	Space-charge effect on photogenerated-current and -voltage in III-nitride optoelectronic semiconductors. Photonics Research, 2021, 9, 1820.	7.0	2
135	Influence of silane flow rate on the structural and optical properties of GaN nanowires with multiple-quantum-shells. Journal of Crystal Growth, 2021, 570, 126201.	1.5	2
136	MOVPE growth of Si-doped GaN cap layers embedding GaN nanowires with multiple-quantum shells. Journal of Crystal Growth, 2022, 578, 126423.	1.5	2
137	Electrical Conductivity of Low-Temperature-Deposited Al0.1Ga0.9N Interlayer. Japanese Journal of Applied Physics, 2000, 39, 6493-6495.	1.5	1
138	Moth-Eye Light-Emitting Diodes. Materials Research Society Symposia Proceedings, 2004, 831, 19.	0.1	1
139	Control of p-type conduction in a-plane Ga1â^'xInxN (0 <x<0.10) 2008,="" 310,="" 4996-4998.<="" by="" crystal="" epitaxy.="" grown="" growth,="" journal="" metalorganic="" of="" on="" r-plane="" sapphire="" substrate="" td="" vapor-phase=""><td>1.5</td><td>1</td></x<0.10)>	1.5	1
140	Activation of Mg-Doped p-Type Al0.17Ga0.83N in Oxygen Ambient. Japanese Journal of Applied Physics, 2009, 48, 101002.	1.5	1
141	Defects in highly Mgâ€doped AlN. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1299-1301.	1.8	1
142	Demonstration of electron beam excitation laser using a GaInN-based multiquantum well active layer. Applied Physics Express, 2016, 9, 101001.	2.4	1
143	High photosensitivity AlGaN/GaInN/GaN heterojunction field-effect transistor type visible photosensors. Japanese Journal of Applied Physics, 2019, 58, SCCC22.	1.5	1
144	Optical and structural characterization of GaInN/GaN multiple quantum wells grown on nonpolar a-plane GaN templates by metalorganic vapor phase epitaxy. Japanese Journal of Applied Physics, 2019, 58, SC1054.	1.5	1

Μοτοακι Ιwaya

#	ARTICLE	IF	CITATIONS
145	Study on N and B Doping by Closed Sublimation Growth Using Separated Ta Crucible. Materials Science Forum, 0, 963, 34-37.	0.3	1
146	Voltage-Controlled Anodic Oxidation of Porous Fluorescent SiC for Effective Surface Passivation. Nanomaterials, 2020, 10, 2075.	4.1	1
147	Analysis of impurity doping in tunnel junction grown on core–shell structure composed of GaInN/GaN multiple-quantum-shells and GaN nanowire. Japanese Journal of Applied Physics, 2022, 61, 012002.	1.5	1
148	Growth defects in InGaNâ€based multipleâ€quantumâ€shell nanowires with Siâ€doped GaN cap layers and tunnel junctions. Physica Status Solidi (B): Basic Research, 0, , .	1.5	1
149	Details of the improvement of crystalline quality of a-plane GaN using one-step lateral growth. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
150	Fabrication of high-performance photodetector based on AlGaN/GaN hetero-field-effect transistors with p-GaN gate. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
151	MOVPE growth of nonpolar a-plane GaN with low oxygen contamination and specular surface on a freestanding GaN substrate. Journal of Crystal Growth, 2012, 351, 126-130.	1.5	0
152	Cp ₂ Mg in-situ monitoring in a MOVPE reactor using a quantum cascade laser. Japanese Journal of Applied Physics, 2019, 58, SC1013.	1.5	0
153	AlGaN-based UV-B laser diode fabricated on AlN with 1 \hat{l} $\!\!\!/4$ m periodic concave and convex patterns. , 2021, , .		0
154	Improved passivation depth of porous fluorescent 6H-SiC with Si/C faces using atomic layer deposition. Japanese Journal of Applied Physics, 2022, 61, 035502.	1.5	0