Siti Aishah Binti Abdul Aziz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4736400/publications.pdf

Version: 2024-02-01

59 805 16 25 papers citations h-index g-index

61 61 61 457 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Non-parametric multiple inputs prediction model for magnetic field dependent complex modulus of magnetorheological elastomer. Scientific Reports, 2022, 12, 2657.	3.3	4
2	Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles. Materials, 2022, 15, 2556.	2.9	6
3	Comprehensive study on physicochemical characteristics of magnetorheological elastomer featuring epoxidized natural rubber. Smart Materials and Structures, 2022, 31, 055017.	3.5	3
4	Field-Dependent Rheological Properties of Magnetorheological Elastomer with Fountain-Like Particle Chain Alignment. Micromachines, 2022, 13, 492.	2.9	6
5	Physicochemical characterization and rheological properties of magnetic elastomers containing different shapes of corroded carbonyl iron particles. Scientific Reports, 2021, 11, 868.	3.3	20
6	Sensitivities of Rheological Properties of Magnetoactive Foam for Soft Sensor Technology. Sensors, 2021, 21, 1660.	3.8	8
7	Shear band formation in magnetorheological elastomer under stress relaxation. Smart Materials and Structures, 2021, 30, 045015.	3.5	9
8	Effects of magnetic field and particles content on rheology and resistivity behavior of magnetorheological elastomer with embedded cobalt particles. Smart Materials and Structures, 2021, 30, 055002.	3.5	3
9	Enhancement of the rheological properties of magnetorheological elastomer via polystyreneâ€grafted carbonyl iron particles. Journal of Applied Polymer Science, 2021, 138, 50860.	2.6	2
10	Microstructural behavior of magnetorheological elastomer undergoing durability evaluation by stress relaxation. Scientific Reports, 2021, 11, 10936.	3.3	11
11	Loss Factor Behavior of Thermally Aged Magnetorheological Elastomers. Materials, 2021, 14, 4874.	2.9	2
12	The Effect of Microparticles on the Storage Modulus and Durability Behavior of Magnetorheological Elastomer. Micromachines, 2021, 12, 948.	2.9	12
13	An Insight into Amorphous Shear Band in Magnetorheological Solid by Atomic Force Microscope. Materials, 2021, 14, 4384.	2.9	2
14	Mini review: an insight on the fabrication methods of smart magnetic polymer foam. Journal of Magnetism and Magnetic Materials, 2021, 534, 168038.	2.3	4
15	Effects of silica on mechanical and rheological properties of EPDM-based magnetorheological elastomers. Smart Materials and Structures, 2021, 30, 105033.	3.5	10
16	Effect of Mould Orientation on the Field-Dependent Properties of MR Elastomers under Shear Deformation. Polymers, 2021, 13, 3273.	4.5	1
17	Rheological Performance of Magnetorheological Grease with Embedded Graphite Additives. Materials, 2021, 14, 5091.	2.9	13
18	Effects of Petroleum-Based Oils as Dispersing Aids on Physicochemical Characteristics of Magnetorheological Elastomers. Materials, 2021, 14, 7026.	2.9	1

#	Article	IF	CITATIONS
19	Dual Properties of Polyvinyl Alcohol-Based Magnetorheological Plastomer with Different Ratio of DMSO/Water. Sensors, 2021, 21, 7758.	3.8	O
20	The Effect of Graphite Additives on Magnetization, Resistivity and Electrical Conductivity of Magnetorheological Plastomer. Materials, 2021, 14, 7484.	2.9	2
21	Enhancement of sensitivity of magnetostrictive foam in low magnetic fields for sensor applications. Polymer, 2020, 211, 123083.	3.8	10
22	Thermal Aging Rheological Behavior of Magnetorheological Elastomers Based on Silicone Rubber. International Journal of Molecular Sciences, 2020, 21, 9007.	4.1	8
23	An Overview of Durability Evaluations of Elastomer-Based Magnetorheological Materials. IEEE Access, 2020, 8, 134536-134552.	4.2	9
24	Systematic Review on the Effects, Roles and Methods of Magnetic Particle Coatings in Magnetorheological Materials. Materials, 2020, 13, 5317.	2.9	8
25	Magnetic and Tunable Sound Absorption Properties of an In-Situ Prepared Magnetorheological Foam. Materials, 2020, 13, 5637.	2.9	11
26	The Rheological Studies on Poly(vinyl) Alcohol-Based Hydrogel Magnetorheological Plastomer. Polymers, 2020, 12, 2332.	4.5	10
27	Effects of corrosion rate of the magnetic particles on the field-dependent material characteristics of silicone based magnetorheological elastomers. Smart Materials and Structures, 2020, 29, 087003.	3.5	5
28	Constitutive models for predicting field-dependent viscoelastic behavior of magnetorheological elastomer using machine learning. Smart Materials and Structures, 2020, 29, 087001.	3.5	11
29	Solvent Dependence of the Rheological Properties in Hydrogel Magnetorheological Plastomer. International Journal of Molecular Sciences, 2020, 21, 1793.	4.1	10
30	Rheological and Resistance Properties of Magnetorheological Elastomer with Cobalt for Sensor Application. Applied Sciences (Switzerland), 2020, 10, 1638.	2.5	17
31	Tunable low range Gr induced magnetorheological elastomer with magnetically conductive feedback. Smart Materials and Structures, 2020, 29, 057001.	3. 5	7
32	Intrinsic Apparent Viscosity and Rheological Properties of Magnetorheological Grease with Dilution Oils. Lecture Notes in Mechanical Engineering, 2020, , 171-180.	0.4	2
33	Relationship between the response of microscopic and magnetic properties with highly uniform dispersion of carbonyl iron particles in magnetorheological polyurethane foam. Smart Materials and Structures, 2020, 29, 115012.	3.5	5
34	Rheological Properties of Mg Substituted Cobalt Nickel Ferrite Nanoparticles as an Additive in Magnetorheological Elastomer. Lecture Notes in Mechanical Engineering, 2020, , 153-162.	0.4	0
35	Rheological Properties of Magnetorheological Elastomer Using Cobalt Powder as Filler. Lecture Notes in Mechanical Engineering, 2020, , 119-127.	0.4	0
36	Effect of High Sintering Temperature on the Cobalt Ferrite Synthesized Via Co-precipitation Method. Lecture Notes in Mechanical Engineering, 2020, , 233-242.	0.4	0

#	Article	IF	CITATIONS
37	Material Characterization of Magnetorheological Elastomers with Corroded Carbonyl Iron Particles: Morphological Images and Field-dependent Viscoelastic Properties. International Journal of Molecular Sciences, 2019, 20, 3311.	4.1	11
38	Characterization of morphological and rheological properties of rigid magnetorheological foams via in situ fabrication method. Journal of Materials Science, 2019, 54, 13821-13833.	3.7	17
39	Enhancement of Particle Alignment Using Silicone Oil Plasticizer and Its Effects on the Field-Dependent Properties of Magnetorheological Elastomers. International Journal of Molecular Sciences, 2019, 20, 4085.	4.1	30
40	Material Characterizations of Gr-Based Magnetorheological Elastomer for Possible Sensor Applications: Rheological and Resistivity Properties. Materials, 2019, 12, 391.	2.9	48
41	The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases. International Journal of Molecular Sciences, 2019, 20, 1525.	4.1	20
42	Thermal Stability and Rheological Properties of Epoxidized Natural Rubber-Based Magnetorheological Elastomer. International Journal of Molecular Sciences, 2019, 20, 746.	4.1	26
43	The field-dependent viscoelastic and transient responses of plate-like carbonyl iron particle based magnetorheological greases. Journal of Intelligent Material Systems and Structures, 2019, 30, 788-797.	2.5	22
44	The field-dependent rheological properties of plate-like carbonyl iron particle-based magnetorheological elastomers. Results in Physics, 2019, 12, 2146-2154.	4.1	30
45	Enhancement of Viscoelastic and Electrical Properties of Magnetorheological Elastomers with Nanosized Ni-Mg Cobalt-Ferrites as Fillers. Materials, 2019, 12, 3531.	2.9	15
46	Role of Additives in Enhancing the Rheological Properties of Magnetorheological Solids: A Review. Advanced Engineering Materials, 2019, 21, 1800696.	3.5	32
47	Implementation of functionalized multiwall carbon nanotubes on magnetorheological elastomer. Journal of Materials Science, 2018, 53, 10122-10134.	3.7	32
48	Material Characterization of a Magnetorheological Fluid Subjected to Long-Term Operation in Damper. Materials, 2018, 11, 2195.	2.9	40
49	A comparative assessment of different dispersing aids in enhancing magnetorheological elastomer properties. Smart Materials and Structures, 2018, 27, 117002.	3.5	16
50	Performance of Magnetorheological Elastomer Based Silicone/SAIB. Key Engineering Materials, 2018, 772, 61-65.	0.4	1
51	Effect of Curing Current on Stiffness and Damping Properties of Magnetorheological Elastomers. International Journal of Sustainable Transportation Technology, 2018, 1, 51-58.	0.2	3
52	An enhancement of mechanical and rheological properties of magnetorheological elastomer with multiwall carbon nanotubes. Journal of Intelligent Material Systems and Structures, 2017, 28, 3127-3138.	2.5	31
53	The field-dependent complex modulus of magnetorheological elastomers consisting of sucrose acetate isobutyrate ester. Journal of Intelligent Material Systems and Structures, 2017, 28, 1993-2004.	2.5	34
54	Rheological properties of isotropic magnetorheological elastomers featuring an epoxidized natural rubber. Smart Materials and Structures, 2016, 25, 107001.	3.5	34

#	Article	IF	CITATIONS
55	Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers. Smart Materials and Structures, 2016, 25, 077001.	3.5	46
56	Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant environment, Kuantan, Pahang, Malaysia. Environmental Science and Pollution Research, 2015, 22, 13127-13136.	5.3	78
57	Hybrid Magnetorheological Elastomer, the Future of Gait Detection. Key Engineering Materials, 0, 775, 177-183.	0.4	3
58	Magnetorheological Elastomer Silicone-Based Containing Corroded Carbonyl Iron Particles. Key Engineering Materials, 0, 772, 51-55.	0.4	1
59	Prediction for magnetostriction magnetorheological foam using machine learning method. Journal of Applied Polymer Science, 0, , .	2.6	2