
Claudia Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4736242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benzothiazinones Kill <i>Mycobacterium tuberculosis</i> by Blocking Arabinan Synthesis. Science, 2009, 324, 801-804.	12.6	660
2	Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. Cell Host and Microbe, 2015, 17, 799-810.	11.0	341
3	Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics, 2016, 17, 15.	2.6	316
4	Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Scientific Reports, 2021, 11, 3030.	3.3	208
5	Towards a new tuberculosis drug: pyridomycin – nature's isoniazid. EMBO Molecular Medicine, 2012, 4, 1032-1042.	6.9	175
6	Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Nature Communications, 2015, 6, 7659.	12.8	141
7	Commensal-driven immune zonation of the liver promotes host defence. Nature, 2021, 589, 131-136.	27.8	141
8	The PhoP-Dependent ncRNA Mcr7 Modulates the TAT Secretion System in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004183.	4.7	127
9	Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. Journal of Clinical Oncology, 2021, 39, 1223-1233.	1.6	127
10	Simple Model for Testing Drugs against Nonreplicating <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 4150-4158.	3.2	117
11	Virulence Regulator EspR of Mycobacterium tuberculosis Is a Nucleoid-Associated Protein. PLoS Pathogens, 2012, 8, e1002621.	4.7	115
12	Small extracellular vesicles deliver miRâ€21 and miRâ€217 as proâ€senescence effectors to endothelial cells. Journal of Extracellular Vesicles, 2020, 9, 1725285.	12.2	104
13	Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget, 2017, 8, 23237-23245.	1.8	90
14	Streptomycin-Starved Mycobacterium tuberculosis 18b, a Drug Discovery Tool for Latent Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5782-5789.	3.2	88
15	Anticytolytic Screen Identifies Inhibitors of Mycobacterial Virulence Protein Secretion. Cell Host and Microbe, 2014, 16, 538-548.	11.0	83
16	The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. ACS Infectious Diseases, 2017, 3, 5-17.	3.8	83
17	The role of low-grade inflammation and metabolic flexibility in aging and nutritional modulation thereof: A systems biology approach. Mechanisms of Ageing and Development, 2014, 136-137, 138-147.	4.6	80
18	<scp>E</scp> sp <scp>C</scp> forms a filamentous structure in the cell envelope of <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> and impacts <scp>ESX</scp> secretion. Molecular Microbiology, 2017, 103, 26-38.	2.5	77

#	Article	IF	CITATIONS
19	Assessing the essentiality of the decaprenylâ€phosphoâ€ <scp>d</scp> â€arabinofuranose pathway in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> using conditional mutants. Molecular Microbiology, 2014, 92, 194-211.	2.5	76
20	Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Research, 2010, 38, e134-e134.	14.5	74
21	Transcriptional Regulation of furA and katG upon Oxidative Stress in Mycobacterium smegmatis. Journal of Bacteriology, 2001, 183, 6801-6806.	2.2	67
22	Mycobacterium tuberculosis FurA Autoregulates Its Own Expression. Journal of Bacteriology, 2003, 185, 5357-5362.	2.2	61
23	Genomeâ€wide regulon and crystal structure of Blal (Rv1846c) from <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2009, 71, 1102-1116.	2.5	61
24	Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase. PLoS Genetics, 2017, 13, e1006754.	3.5	56
25	In VitroandIn VivoActivities of Three Oxazolidinones against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 3217-3223.	3.2	53
26	Genome-Wide Definition of the SigF Regulon in Mycobacterium tuberculosis. Journal of Bacteriology, 2012, 194, 2001-2009.	2.2	46
27	A Meta-Analysis of Brain DNA Methylation Across Sex, Age, and Alzheimer's Disease Points for Accelerated Epigenetic Aging in Neurodegeneration. Frontiers in Aging Neuroscience, 2021, 13, 639428.	3.4	45
28	High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology (United Kingdom), 2013, 159, 12-22.	1.8	44
29	High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Research, 2013, 41, 961-977.	14.5	41
30	Missing value estimation methods for DNA methylation data. Bioinformatics, 2019, 35, 3786-3793.	4.1	39
31	The Phosphatidyl- <i>myo</i> -Inositol Mannosyltransferase PimA Is Essential for Mycobacterium tuberculosis Growth <i>In Vitro</i> and <i>In Vivo</i> . Journal of Bacteriology, 2014, 196, 3441-3451.	2.2	37
32	Whole-genome sequencing analysis of semi-supercentenarians. ELife, 2021, 10, .	6.0	37
33	Clinical relevance of clonal hematopoiesis in persons aged ≥80 years. Blood, 2021, 138, 2093-2105.	1.4	37
34	Tuberculosis drugs: new candidates and how to find more. Future Microbiology, 2011, 6, 617-633.	2.0	36
35	Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6451-6459.	3.2	36
36	Systems medicine of inflammaging. Briefings in Bioinformatics, 2016, 17, 527-540.	6.5	35

#	Article	IF	CITATIONS
37	EspL is essential for virulence and stabilizes EspE, EspF and EspH levels in Mycobacterium tuberculosis. PLoS Pathogens, 2018, 14, e1007491.	4.7	33
38	Effect of a low protein diet on chicken ceca microbiome and productive performances. Poultry Science, 2019, 98, 3963-3976.	3.4	31
39	Bioluminescence for Assessing Drug Potency against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4012-4019.	3.2	30
40	<scp>Espl</scp> regulates the <scp>ESX</scp> â€1 secretion system in response to <scp>ATP</scp> levels in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> . Molecular Microbiology, 2014, 93, 1057-1065.	2.5	27
41	Impact of a probiotic-based cleaning product on the microbiological profile of broiler litters and chicken caeca microbiota. Poultry Science, 2019, 98, 3602-3610.	3.4	27
42	GtrA Protein Rv3789 Is Required for Arabinosylation of Arabinogalactan in Mycobacterium tuberculosis. Journal of Bacteriology, 2015, 197, 3686-3697.	2.2	26
43	Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome. PLoS ONE, 2020, 15, e0228338.	2.5	25
44	Insights From Liverâ€Humanized Mice on Cholesterol Lipoprotein Metabolism and LXRâ€Agonist Pharmacodynamics in Humans. Hepatology, 2020, 72, 656-670.	7.3	23
45	The katG mRNA of Mycobacterium tuberculosis and Mycobacterium smegmatis is processed at its 5' end and is stabilized by both a polypurine sequence and translation initiation. BMC Molecular Biology, 2008, 9, 33.	3.0	22
46	Stochastic neutral modelling of the Gut Microbiota's relative species abundance from next generation sequencing data. BMC Bioinformatics, 2016, 17, 16.	2.6	19
47	Essential Nucleoid Associated Protein mIHF (Rv1388) Controls Virulence and Housekeeping Genes in Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 14214.	3.3	19
48	Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b. BMC Genomics, 2016, 17, 190.	2.8	18
49	Methylation data imputation performances under different representations and missingness patterns. BMC Bioinformatics, 2020, 21, 268.	2.6	15
50	Whole-Genome Sequencing for Comparative Genomics and De Novo Genome Assembly. Methods in Molecular Biology, 2015, 1285, 1-16.	0.9	15
51	Dissecting Regulatory Networks in Host-Pathogen Interaction Using ChIP-on-chip Technology. Cell Host and Microbe, 2009, 5, 430-437.	11.0	14
52	Sigma Factor F Does Not Prevent Rifampin Inhibition of RNA Polymerase or Cause Rifampin Tolerance in <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2010, 192, 5472-5479.	2.2	14
53	A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project. Mechanisms of Ageing and Development, 2021, 194, 111426.	4.6	14
54	Early downregulation of hsa-miR-144-3p in serum from drug-naÃ⁻ve Parkinson's disease patients. Scientific Reports, 2022, 12, 1330.	3.3	14

#	Article	IF	CITATIONS
55	Promoter mutagenesis for fineâ€ŧuning expression of essential genes in <i>Mycobacterium tuberculosis</i> . Microbial Biotechnology, 2018, 11, 238-247.	4.2	13
56	Pilot Study on Poultry Meat from Antibiotic Free and Conventional Farms: Can Metagenomics Detect Any Difference?. Foods, 2022, 11, 249.	4.3	13
57	Mycobacterium ulcerans Mouse Model Refinement for Pre-Clinical Profiling of Vaccine Candidates. PLoS ONE, 2016, 11, e0167059.	2.5	12
58	Evaluation of pre-processing on the meta-analysis of DNA methylation data from the Illumina HumanMethylation450 BeadChip platform. PLoS ONE, 2020, 15, e0229763.	2.5	12
59	Vaccines as remedy for antimicrobial resistance and emerging infections. Current Opinion in Immunology, 2020, 65, 102-106.	5.5	11
60	Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients. Npj Parkinson's Disease, 2022, 8, 14.	5.3	11
61	Whole-Transcriptome Sequencing for High-Resolution Transcriptomic Analysis in Mycobacterium tuberculosis. Methods in Molecular Biology, 2015, 1285, 17-30.	0.9	10
62	Multicenter analysis of sputum microbiota in tuberculosis patients. PLoS ONE, 2020, 15, e0240250.	2.5	10
63	Rv3852 (H-NS) of Mycobacterium tuberculosis Is Not Involved in Nucleoid Compaction and Virulence Regulation. Journal of Bacteriology, 2017, 199, .	2.2	9
64	Antibodies, epicenter of SARS-CoV-2 immunology. Cell Death and Differentiation, 2021, 28, 821-824.	11.2	9
65	Estimage: a webserver hub for the computation of methylation age. Nucleic Acids Research, 2021, 49, W199-W206.	14.5	9
66	Assessing essentiality of transketolase in <i>Mycobacterium tuberculosis</i> using an inducible protein degradation system. FEMS Microbiology Letters, 2014, 358, 30-35.	1.8	8
67	Analysis of Epigenetic Age Predictors in Pain-Related Conditions. Frontiers in Public Health, 2020, 8, 172.	2.7	8
68	Proficiency Testing of Metagenomics-Based Detection of Food-Borne Pathogens Using a Complex Artificial Sequencing Dataset. Frontiers in Microbiology, 2020, 11, 575377.	3.5	7
69	Polarly Localized EccE ₁ Is Required for ESX-1 Function and Stabilization of ESX-1 Membrane Proteins in Mycobacterium tuberculosis. Journal of Bacteriology, 2020, 202, .	2.2	7
70	Host-Directed Therapies and Anti-Virulence Compounds to Address Anti-Microbial Resistant Tuberculosis Infection. Applied Sciences (Switzerland), 2020, 10, 2688.	2.5	6
71	Elevated metallothionein expression in long-lived species mediates the influence of cadmium accumulation on aging. GeroScience, 2021, 43, 1975-1993.	4.6	6
72	Identification of a T cell gene expression clock obtained by exploiting a MZ twin design. Scientific Reports, 2017, 7, 6005.	3.3	5

#	Article	IF	CITATIONS
73	Metagenomics-Based Proficiency Test of Smoked Salmon Spiked with a Mock Community. Microorganisms, 2020, 8, 1861.	3.6	4
74	Gut microbiota ecology: Biodiversity estimated from hybrid neutral-niche model increases with health status and aging. PLoS ONE, 2020, 15, e0237207.	2.5	4
75	Prediction of Overall Survival in Cervical Cancer Patients Using PET/CT Radiomic Features. Applied Sciences (Switzerland), 2022, 12, 5946.	2.5	4
76	Evaluation of different computational methods for DNA methylation-based biological age. Briefings in Bioinformatics, 2022, 23, .	6.5	4
77	Statistical strategies and stochastic predictive models for the MARK-AGE data. Mechanisms of Ageing and Development, 2015, 151, 45-53.	4.6	3
78	Genomic profiles of primary and metastatic esophageal adenocarcinoma identified via digital sorting of pure cell populations: results from a case report. BMC Cancer, 2018, 18, 889.	2.6	3
79	Impact of concurrency on the performance of a whole exome sequencing pipeline. BMC Bioinformatics, 2021, 22, 60.	2.6	3
80	Master equation and relative species abundance distribution for Lotka-Volterra models of interacting ecological communities. Theoretical Biology Forum, 2016, 109, 37-47.	0.2	3
81	DNA replication in phage P4: Characterization of replicon II. Plasmid, 2006, 56, 216-222.	1.4	2
82	Depression and Microbiome—Study on the Relation and Contiguity between Dogs and Humans. Applied Sciences (Switzerland), 2020, 10, 573.	2.5	2
83	Heterogeneity of prodromal Parkinson symptoms in siblings of Parkinson disease patients. Npj Parkinson's Disease, 2021, 7, 78.	5.3	2
84	Erratum for Boldrin et al., The Phosphatidyl- <i>myo</i> -Inositol Mannosyltransferase PimA Is Essential for Mycobacterium tuberculosis Growth <i>In Vitro</i> and <i>In Vivo</i> . Journal of Bacteriology, 2014, 196, 4197-4197.	2.2	1
85	FasR Regulates Fatty Acid Biosynthesis and Is Essential for Virulence of Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 586285.	3.5	1
86	Canine smooth muscle tumors: A clinicopathological study. Veterinary Pathology, 2022, 59, 244-255.	1.7	1
87	Bacteriophage P4 sut1: a mutation suppressing transcription termination. Journal of General Virology, 2007, 88, 1041-1047.	2.9	0
88	Editorial on Special Issue "Tuberculosis Drug Discovery and Development 2019― Applied Sciences (Switzerland), 2020, 10, 6069.	2.5	0
89	DNA methylation correlation structure of chromosome 21 in Down syndrome Theoretical Biology Forum, 2021, 114, 89-113.	0.2	0