Isabelle Landrieu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4733440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of Tau seeding by targeting Tau nucleation core within neurons with a single domain antibody fragment. Molecular Therapy, 2022, 30, 1484-1499.	8.2	31
2	Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Frontiers in Chemistry, 2022, 10, .	3.6	6
3	Phosphorylated fullâ€length Tau interacts with 14â€3â€3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14â€3â€3 dimer. FEBS Journal, 2021, 288, 1918-1934.	4.7	13
4	Phosphorylation and O-GlcNAcylation of the PHF-1 Epitope of Tau Protein Induce Local Conformational Changes of the C-Terminus and Modulate Tau Self-Assembly Into Fibrillar Aggregates. Frontiers in Molecular Neuroscience, 2021, 14, 661368.	2.9	30
5	NMR spectroscopy of the main protease of SARSâ€CoVâ€2 and fragmentâ€based screening identify three protein hotspots and an antiviral fragment. Angewandte Chemie, 2021, 133, 25632.	2.0	2
6	NMR Spectroscopy of the Main Protease of SARSâ€CoVâ€2 and Fragmentâ€Based Screening Identify Three Protein Hotspots and an Antiviral Fragment. Angewandte Chemie - International Edition, 2021, 60, 25428-25435.	13.8	22
7	Dynamic interactions and Ca2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nature Communications, 2021, 12, 6292.	12.8	10
8	Adoption of a Turn Conformation Drives the Binding Affinity of p53 C-Terminal Domain Peptides to 14-3-3Ïf. ACS Chemical Biology, 2020, 15, 262-271.	3.4	10
9	1H, 13C, and 15N chemical shift assignment of human PACSIN1/syndapin I SH3 domain in solution. Biomolecular NMR Assignments, 2020, 14, 175-178.	0.8	1
10	Selectivity via Cooperativity: Preferential Stabilization of the p65/14-3-3 Interaction with Semisynthetic Natural Products. Journal of the American Chemical Society, 2020, 142, 11772-11783.	13.7	41
11	Fragment-based Differential Targeting of PPI Stabilizer Interfaces. Journal of Medicinal Chemistry, 2020, 63, 6694-6707.	6.4	35
12	Design of Drugâ€Like Protein–Protein Interaction Stabilizers Guided By Chelationâ€Controlled Bioactive Conformation Stabilization. Chemistry - A European Journal, 2020, 26, 7131-7139.	3.3	17
13	Single Domain Antibody Fragments as New Tools for the Detection of Neuronal Tau Protein in Cells and in Mice Studies. ACS Chemical Neuroscience, 2019, 10, 3997-4006.	3.5	23
14	Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Frontiers in Aging Neuroscience, 2019, 11, 204.	3.4	294
15	Set-up and screening of a fragment library targeting the 14-3-3 protein interface. MedChemComm, 2019, 10, 1796-1802.	3.4	17
16	Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor. Brain, 2019, 142, 3636-3654.	7.6	71
17	Nanobodies (VHHs) for targeting tau in Alzheimer's disease and tauopathies. IBRO Reports, 2019, 6, S100.	0.3	0
18	BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr348 phosphorylation. Acta Neuropathologica, 2019, 138, 631-652.	7.7	44

#	Article	IF	CITATIONS
19	Major Differences between the Self-Assembly and Seeding Behavior of Heparin-Induced and in Vitro Phosphorylated Tau and Their Modulation by Potential Inhibitors. ACS Chemical Biology, 2019, 14, 1363-1379.	3.4	34
20	Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain, 2019, 142, 1736-1750.	7.6	113
21	The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention?. Acta Neuropathologica Communications, 2019, 7, 31.	5.2	49
22	F2â€06â€01: MAJOR DIFFERENCES BETWEEN THE SELFâ€ASSEMBLY, SEEDING BEHAVIOR, AND INTERACTION W MODULATORS OF HEPARINâ€INDUCED VERSUS INâ€VITRO PHOSPHORYLATED TAU. Alzheimer's and Dementia, 2019, 15, P524.	ITH 0.8	0
23	Zinc Binding to Tau Influences Aggregation Kinetics and Oligomer Distribution. International Journal of Molecular Sciences, 2019, 20, 5979.	4.1	25
24	Backbone chemical shift assignments of human 14-3-3σ. Biomolecular NMR Assignments, 2019, 13, 103-107.	0.8	11
25	Nuclear Magnetic Resonance Spectroscopy Insights into Tau Structure in Solution: Impact of Post-translational Modifications. Advances in Experimental Medicine and Biology, 2019, 1184, 35-45.	1.6	8
26	The O-β-linked N-acetylglucosaminylation of the Lamin B receptor and its impact on DNA binding and phosphorylation. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 825-835.	2.4	6
27	Inhibition of 14-3-3/Tau by Hybrid Small-Molecule Peptides Operating via Two Different Binding Modes. ACS Chemical Neuroscience, 2018, 9, 2639-2654.	3.5	29
28	Modulators of 14-3-3 Protein–Protein Interactions. Journal of Medicinal Chemistry, 2018, 61, 3755-3778.	6.4	202
29	Structural Basis of Tau Interaction With BIN1 and Regulation by Tau Phosphorylation. Frontiers in Molecular Neuroscience, 2018, 11, 421.	2.9	32
30	Direct Crosstalk Between O-GlcNAcylation and Phosphorylation of Tau Protein Investigated by NMR Spectroscopy. Frontiers in Endocrinology, 2018, 9, 595.	3.5	32
31	Two Tau binding sites on tubulin revealed by thiol-disulfide exchanges. Scientific Reports, 2018, 8, 13846.	3.3	15
32	The Study of Posttranslational Modifications of Tau Protein by Nuclear Magnetic Resonance Spectroscopy: Phosphorylation of Tau Protein by ERK2 Recombinant Kinase and Rat Brain Extract, and Acetylation by Recombinant Creb-Binding Protein. Methods in Molecular Biology, 2017, 1523, 179-213.	0.9	15
33	Solution Structure of the N-Terminal Domain of Mediator Subunit MED26 and Molecular Characterization of Its Interaction with EAF1 and TAF7. Journal of Molecular Biology, 2017, 429, 3043-3055.	4.2	12
34	NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5B. Journal of Biological Chemistry, 2017, 292, 18024-18043.	3.4	7
35	Regulation of the interaction between the neuronal <scp>BIN</scp> 1 isoform 1 and Tau proteins – role of the <scp>SH</scp> 3 domain. FEBS Journal, 2017, 284, 3218-3229.	4.7	35
36	Identification of the Tau phosphorylation pattern that drives its aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9080-9085.	7.1	168

#	Article	IF	CITATIONS
37	9. Post-translational Modifications of the Proteome: The Example of Tau in the Neuron and the Brain. , 2017, , 198-223.		0
38	NMR Meets Tau: Insights into Its Function and Pathology. Biomolecules, 2016, 6, 28.	4.0	25
39	Isomerization and Oligomerization of Truncated and Mutated Tau Forms by FKBP52 are Independent Processes. Journal of Molecular Biology, 2016, 428, 1080-1090.	4.2	26
40	A β-Turn Motif in the Steroid Hormone Receptor's Ligand-Binding Domains Interacts with the Peptidyl-prolyl Isomerase (PPIase) Catalytic Site of the Immunophilin FKBP52. Biochemistry, 2016, 55, 5366-5376.	2.5	10
41	Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nature Communications, 2016, 7, 12673.	12.8	109
42	Nuclear Magnetic Resonance Spectroscopy for the Identification of Multiple Phosphorylations of Intrinsically Disordered Proteins. Journal of Visualized Experiments, 2016, , .	0.3	17
43	1H, 15N and 13C assignments of the N-terminal domain of the Mediator complex subunit MED26. Biomolecular NMR Assignments, 2016, 10, 233-236.	0.8	3
44	Proline Conformation in a Functional Tau Fragment. Journal of Molecular Biology, 2016, 428, 79-91.	4.2	31
45	Characterization of Neuronal Tau Protein as a Target of Extracellular Signal-regulated Kinase. Journal of Biological Chemistry, 2016, 291, 7742-7753.	3.4	54
46	Stabilizerâ€Guided Inhibition of Protein–Protein Interactions. Angewandte Chemie - International Edition, 2015, 54, 15720-15724.	13.8	56
47	A Phosphorylationâ€Induced Turn Defines the Alzheimer's Disease AT8 Antibody Epitope on the Tau Protein. Angewandte Chemie - International Edition, 2015, 54, 6819-6823.	13.8	41
48	Characterization of ERM transactivation domain binding to the ACID/PTOV domain of the Mediator subunit MED25. Nucleic Acids Research, 2015, 43, 7110-7121.	14.5	28
49	Nuclear Magnetic Resonance Spectroscopy Characterization of Interaction of Tau with DNA and Its Regulation by Phosphorylation. Biochemistry, 2015, 54, 1525-1533.	2.5	70
50	The FK506-binding protein FKBP52 <i>in vitro</i> induces aggregation of truncated Tau forms with prion-like behavior. FASEB Journal, 2015, 29, 3171-3181.	0.5	33
51	Tamoxifen Inhibits CDK5 Kinase Activity by Interacting with p35/p25 and Modulates the Pattern of Tau Phosphorylation. Chemistry and Biology, 2015, 22, 472-482.	6.0	33
52	Tau phosphorylation regulates the interaction between BIN1's SH3 domain and Tau's proline-rich domain. Acta Neuropathologica Communications, 2015, 3, 58.	5.2	66
53	Involvement of 14â€3â€3 in tubulin instability and impaired axon development is mediated by Tau. FASEB Journal, 2015, 29, 4133-4144.	0.5	69
54	Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2. BMC Biochemistry, 2014, 15, 24.	4.4	17

#	Article	IF	CITATIONS
55	Immunophilin FKBP52 induces Tau-P301L filamentous assembly in vitro and modulates its activity in a model of tauopathy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4584-4589.	7.1	55
56	A functional fragment of Tau forms fibers without the need for an intermolecular cysteine bridge. Biochemical and Biophysical Research Communications, 2014, 445, 299-303.	2.1	23
57	H/D exchange of a 15 N labelled Tau fragment as measured by a simple Relax-EXSY experiment. Journal of Magnetic Resonance, 2014, 249, 32-37.	2.1	6
58	Nuclear Magnetic Resonance Analysis of the Acetylation Pattern of the Neuronal Tau Protein. Biochemistry, 2014, 53, 3020-3032.	2.5	60
59	Identification of a <i>PlasmodiumÂfalciparum</i> inhibitorâ€2 motif involved in the binding and regulation activity of protein phosphatase typeÂ1. FEBS Journal, 2014, 281, 4519-4534.	4.7	25
60	Mechanism of Tau-Promoted Microtubule Assembly As Probed by NMR Spectroscopy. Journal of the American Chemical Society, 2014, 136, 12615-12623.	13.7	40
61	P4-032: MOLECULAR CHARACTERISATION OF BRIDGING INTEGRATOR 1 (BIN1) INTERACTION WITH TAU. , 2014, 10, P794-P794.		0
62	Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA. Journal of Biomolecular NMR, 2013, 55, 323-337.	2.8	26
63	Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker. Neurobiology of Aging, 2013, 34, 757-769.	3.1	16
64	Plasmodium falciparum Inhibitor-3 Homolog Increases Protein Phosphatase Type 1 Activity and Is Essential for Parasitic Survival. Journal of Biological Chemistry, 2012, 287, 1306-1321.	3.4	29
65	Towards understanding the phosphorylation code of tau. Biochemical Society Transactions, 2012, 40, 698-703.	3.4	20
66	Cell signaling, post-translational protein modifications and NMR spectroscopy. Journal of Biomolecular NMR, 2012, 54, 217-236.	2.8	153
67	Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the prolineâ€rich region of the disordered Tau protein. Proteins: Structure, Function and Bioinformatics, 2012, 80, 454-462.	2.6	79
68	Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Molecular BioSystems, 2011, 7, 1420.	2.9	108
69	Molecular Basis for an Ancient Partnership between Prolyl Isomerase Pin1 and Phosphatase Inhibitor-2. Biochemistry, 2011, 50, 6567-6578.	2.5	12
70	Ranking High Affinity Ligands of Low Solubility by NMR Spectroscopy. ACS Medicinal Chemistry Letters, 2011, 2, 485-487.	2.8	7
71	Characterization of the AT180 epitope of phosphorylated Tau protein by a combined nuclear magnetic resonance and fluorescence spectroscopy approach. Biochemical and Biophysical Research Communications, 2011, 412, 743-746.	2.1	40
72	Comparative analysis of Erk phosphorylation suggests a mixed strategy for measuring phosphoâ€form distributions. Molecular Systems Biology, 2011, 7, 482.	7.2	38

#	Article	IF	CITATIONS
73	Systematic Identification of Tubulin-interacting Fragments of the Microtubule-associated Protein Tau Leads to a Highly Efficient Promoter of Microtubule Assembly. Journal of Biological Chemistry, 2011, 286, 33358-33368.	3.4	56
74	Mice lacking phosphatase PP2A subunit PR61/B'δ (<i>Ppp2r5d</i>) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3β. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6957-6962.	7.1	105
75	Domain 3 of NS5A Protein from the Hepatitis C Virus Has Intrinsic α-Helical Propensity and Is a Substrate of Cyclophilin A. Journal of Biological Chemistry, 2011, 286, 20441-20454.	3.4	98
76	Molecular Implication of PP2A and Pin1 in the Alzheimer's Disease Specific Hyperphosphorylation of Tau. PLoS ONE, 2011, 6, e21521.	2.5	61
77	NMR spectroscopy of the neuronal tau protein: normal function and implication in Alzheimer's disease. Biochemical Society Transactions, 2010, 38, 1006-1011.	3.4	33
78	Spectroscopic Studies of CSK3Î ² Phosphorylation of the Neuronal Tau Protein and Its Interaction with the N-terminal Domain of Apolipoprotein E. Journal of Biological Chemistry, 2010, 285, 33435-33444.	3.4	71
79	Microtubule and MAPs. Methods in Cell Biology, 2010, 95, 449-480.	1.1	12
80	Structural Basis for the Non-Immunosuppressive Character of the Cyclosporin A Analogue Debio 025. Biochemistry, 2010, 49, 4679-4686.	2.5	39
81	Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules. FASEB Journal, 2009, 23, 1146-1152.	0.5	80
82	Hepatitis C Virus NS5A Protein Is a Substrate for the Peptidyl-prolyl cis/trans Isomerase Activity of Cyclophilins A and B. Journal of Biological Chemistry, 2009, 284, 13589-13601.	3.4	149
83	Selective backbone labelling of ILV methyl labelled proteins. Journal of Biomolecular NMR, 2009, 43, 219-227.	2.8	8
84	NMR observation of Tau in Xenopus oocytes. Journal of Magnetic Resonance, 2008, 192, 252-257.	2.1	100
85	Studying Posttranslational Modifications by In-Cell NMR. Chemistry and Biology, 2008, 15, 311-312.	6.0	17
86	The Peptidyl–Prolyl Isomerase and Chaperone Par27 of Bordetella pertussis as the Prototype for a New Group of Parvulins. Journal of Molecular Biology, 2008, 376, 414-426.	4.2	25
87	Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry. Biochemical and Biophysical Research Communications, 2008, 369, 539-546.	2.1	38
88	The Talin Rod IBS2 α-Helix Interacts with the β3 Integrin Cytoplasmic Tail Membrane-proximal Helix by Establishing Charge Complementary Salt Bridges. Journal of Biological Chemistry, 2008, 283, 24212-24223.	3.4	49
89	Tau Aggregation in Alzheimer's Disease. Prion, 2007, 1, 21-25.	1.8	58
90	Structural and Functional Characterization of the Interaction between Cyclophilin B and a Heparin-derived Oligosaccharide. Journal of Biological Chemistry, 2007, 282, 34148-34158.	3.4	24

#	Article	IF	CITATIONS
91	NMR Investigation of the Interaction between the Neuronal Protein Tau and the Microtubulesâ€. Biochemistry, 2007, 46, 3055-3064.	2.5	86
92	Molecular mechanisms of the phosphoâ€dependent prolyl <i>cis</i> / <i>trans</i> isomerase Pin1. FEBS Journal, 2007, 274, 5211-5222.	4.7	55
93	NMR Analysis of a Tau Phosphorylation Pattern. Journal of the American Chemical Society, 2006, 128, 3575-3583.	13.7	107
94	Structural Impact of Heparin Binding to Full-Length Tau As Studied by NMR Spectroscopy. Biochemistry, 2006, 45, 12560-12572.	2.5	142
95	ELISE NMR: Experimental liquid sealing of NMR samples. Journal of Magnetic Resonance, 2006, 181, 199-202.	2.1	10
96	Exploring the Molecular Function of PIN1 by Nuclear Magnetic Resonance. Current Protein and Peptide Science, 2006, 7, 179-194.	1.4	21
97	Studying the Natively Unfolded Neuronal Tau Protein by Solution NMR Spectroscopy. Protein and Peptide Letters, 2006, 13, 235-246.	0.9	28
98	Selective intracellular accumulation of the major metabolite issued from the activation of the prodrug ethionamide in mycobacteria. Journal of Antimicrobial Chemotherapy, 2006, 58, 768-772.	3.0	47
99	Arabidopsis PASTICCINO2 Is an Antiphosphatase Involved in Regulation of Cyclin-Dependent Kinase A. Plant Cell, 2006, 18, 1426-1437.	6.6	40
100	High-Resolution Magic Angle Spinning NMR of the Neuronal Tau Protein Integrated in Alzheimer's-Like Paired Helical Fragments. Journal of the American Chemical Society, 2005, 127, 10138-10139.	13.7	23
101	Regions of Tau Implicated in the Paired Helical Fragment Core as Defined by NMR. ChemBioChem, 2005, 6, 1849-1856.	2.6	32
102	Control of Proteinâ^'Protein Interactions:Â Structure-Based Discovery of Low Molecular Weight Inhibitors of the Interactions between Pin1 WW Domain and Phosphopeptides. Journal of Medicinal Chemistry, 2005, 48, 4815-4823.	6.4	26
103	Monitoring of the ethionamide pro-drug activation in mycobacteria by 1H high resolution magic angle spinning NMR. Biochemical and Biophysical Research Communications, 2005, 331, 452-458.	2.1	38
104	Regulation of Pin1 peptidyl-prolylcis/transisomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein. FEBS Letters, 2005, 579, 4159-4164.	2.8	53
105	A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13380-13385.	7.1	105
106	Proline-Directed Random-Coil Chemical Shift Values as a Tool for the NMR Assignment of the Tau Phosphorylation Sites. ChemBioChem, 2004, 5, 73-78.	2.6	53
107	Accepting its Random Coil Nature Allows a Partial NMR Assignment of the Neuronal Tau Protein. ChemBioChem, 2004, 5, 1639-1646.	2.6	74
108	Proline-Directed Random-Coil Chemical Shift Values as a Tool for the NMR Assignment of the Tau Phosphorylation Sites. ChemBioChem, 2004, 5, 256-256.	2.6	0

#	Article	IF	CITATIONS
109	The Peptidyl Prolyl cis/trans-Isomerase Pin1 Recognizes the Phospho-Thr212-Pro213 Site on Tau. Biochemistry, 2004, 43, 2032-2040.	2.5	77
110	Characterization of the Arabidopsis thaliana Arath;CDC25 dual-specificity tyrosine phosphatase. Biochemical and Biophysical Research Communications, 2004, 322, 734-739.	2.1	38
111	Structural Analysis of Escherichia coli OpgG, a Protein Required for the Biosynthesis of Osmoregulated Periplasmic Glucans. Journal of Molecular Biology, 2004, 342, 195-205.	4.2	32
112	Neurofibrillary degeneration of the Alzheimer-type: an alternate pathway to neuronal apoptosis?. Biochemical Pharmacology, 2003, 66, 1619-1625.	4.4	45
113	Solution NMR Study of the Monomeric Form of p13 Protein Sheds Light on the Hinge Region Determining the Affinity for a Phosphorylated Substrate. Journal of Biological Chemistry, 2002, 277, 12375-12381.	3.4	12
114	Solution Structure of the Single-domain Prolyl Cis/Trans Isomerase PIN1At from Arabidopsis thaliana. Journal of Molecular Biology, 2002, 320, 321-332.	4.2	36
115	Assignment of the 1H, 13C and 15N resonances and secondary structure of the monomeric p13suc1 protein of Saccharomyces pombe. Journal of Biomolecular NMR, 2002, 23, 155-156.	2.8	1
116	Pin1 : A Therapeutic Target in Alzheimer Neurodegeneration. Journal of Molecular Neuroscience, 2002, 19, 275-288.	2.3	38
117	p13 and the WW Domain of PIN1 Bind to the Same Phosphothreonine-Proline Epitope. Journal of Biological Chemistry, 2001, 276, 1434-1438.	3.4	24
118	1H NMR Study on the Binding of Pin1 Trp-Trp Domain with Phosphothreonine Peptides. Journal of Biological Chemistry, 2001, 276, 25150-25156.	3.4	115
119	Letter to the editor: sequence-specific 1H, 13C and 15N chemical shift backbone NMR assignment and secondary structure of the Arabidopsis thaliana PIN1At protein. Journal of Biomolecular NMR, 2000, 17, 271-272.	2.8	3
120	The Arabidopsis thaliana PIN1At Gene Encodes a Single-domain Phosphorylation-dependent Peptidyl Prolylcis/trans Isomerase. Journal of Biological Chemistry, 2000, 275, 10577-10581.	3.4	49
121	Recombinant Production of the p10CKS1AtProtein fromArabidopsis thalianaand13C and15N Double-Isotopic Enrichment for NMR Studies. Protein Expression and Purification, 1999, 16, 144-151.	1.3	5
122	Identification of YHR019 in Saccharomyces cerevisiae chromosome VIII as the gene for the cytosolic asparaginyl-tRNA synthetase. , 1998, 14, 527-533.		5
123	Mitochondria1 Asparaginyl-tRNA Synthetase Encoded by the Yeast Nuclear Gene YCR24c. FEBS Journal, 1997, 243, 268-273.	0.2	8