Nicola Tirelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4731588/publications.pdf

Version: 2024-02-01

			44069	4	8315
١	188	9,189	48		88
	papers	citations	h-index		g-index
				_	
	192	192	192		11268
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Oxidation-responsive polymeric vesicles. Nature Materials, 2004, 3, 183-189.	27.5	798
2	Cell-Responsive Synthetic Hydrogels. Advanced Materials, 2003, 15, 888-892.	21.0	486
3	Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials, 2003, 24, 893-900.	11.4	373
4	Systematic Modulation of Michael-Type Reactivity of Thiols through the Use of Charged Amino Acids. Bioconjugate Chemistry, 2001, 12, 1051-1056.	3.6	334
5	Chitosan/TPP and Chitosan/TPP-hyaluronic Acid Nanoparticles: Systematic Optimisation of the Preparative Process and Preliminary Biological Evaluation. Pharmaceutical Research, 2009, 26, 1918-1930.	3.5	268
6	Glucose-oxidase Based Self-Destructing Polymeric Vesicles. Langmuir, 2004, 20, 3487-3491.	3.5	228
7	Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nature Materials, 2003, 2, 259-264.	27.5	214
8	Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. European Journal of Pharmaceutical Sciences, 2006, 29, 120-129.	4.0	179
9	Oxidation-Sensitive Polymeric Nanoparticles. Langmuir, 2005, 21, 411-417.	3.5	147
10	Scavenging ROS: Superoxide Dismutase/Catalase Mimetics by the Use of an Oxidation-Sensitive Nanocarrier/Enzyme Conjugate. Bioconjugate Chemistry, 2012, 23, 438-449.	3.6	145
11	New Synthetic Methodologies for Amphiphilic Multiblock Copolymers of Ethylene Glycol and Propylene Sulfide. Macromolecules, 2001, 34, 8913-8917.	4.8	137
12	Hyaluronic Acid Coated Chitosan Nanoparticles Reduced the Immunogenicity of the Formed Protein Corona. Scientific Reports, 2017, 7, 10542.	3.3	126
13	Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Science Advances, 2016, 2, e1600349.	10.3	119
14	Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opinion on Drug Delivery, 2010, 7, 895-913.	5.0	118
15	Chitosan/Hyaluronic Acid Nanoparticles: Rational Design Revisited for RNA Delivery. Molecular Pharmaceutics, 2017, 14, 2422-2436.	4.6	114
16	Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Biomaterials, 2004, 25, 5115-5124.	11.4	113
17	Amphiphilic Hydrogel Nanoparticles. Preparation, Characterization, and Preliminary Assessment as New Colloidal Drug Carriers. Langmuir, 2005, 21, 2605-2613.	3.5	111
18	Donorâ-Acceptor-Substituted Phenylethenyl Bithiophenes:Â Highly Efficient and Stable Nonlinear Optical Chromophores. Organic Letters, 1999, 1, 1847-1849.	4.6	109

#	Article	IF	Citations
19	Hyaluronic acid (HA) presentation as a tool to modulate and control the receptor-mediated uptake of HA-coated nanoparticles. Biomaterials, 2013, 34, 5369-5380.	11.4	107
20	Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels. Biomaterials, 2011, 32, 6456-6470.	11.4	106
21	Nanocarriers for Cytoplasmic Delivery: Cellular Uptake and Intracellular Fate of Chitosan and Hyaluronic Acidâ€Coated Chitosan Nanoparticles in a Phagocytic Cell Model. Macromolecular Bioscience, 2011, 11, 1747-1760.	4.1	100
22	Oxidationâ€Responsive Polymers: Which Groups to Use, How to Make Them, What to Expect From Them (Biomedical Applications). Macromolecular Chemistry and Physics, 2013, 214, 143-158.	2.2	98
23	The CD44â€Mediated Uptake of Hyaluronic Acidâ€Based Carriers in Macrophages. Advanced Healthcare Materials, 2017, 6, 1601012.	7.6	98
24	Hyaluronic acid-coated chitosan nanoparticles: Molecular weight-dependent effects on morphology and hyaluronic acid presentation. Journal of Controlled Release, 2013, 172, 1142-1150.	9.9	96
25	Polymers and Sulfur: what are Organic Polysulfides Good For? Preparative Strategies and Biological Applications. Macromolecular Rapid Communications, 2009, 30, 299-315.	3.9	94
26	Water-borne,in situcrosslinked biomaterials from phase-segregated precursors. Journal of Biomedical Materials Research - Part A, 2003, 64A, 447-456.	4.0	90
27	Materials for cell encapsulation via a new tandem approach combining reverse thermal gelation and covalent crosslinking. Macromolecular Chemistry and Physics, 2002, 203, 1466-1472.	2.2	83
28	Evaluating the Efficiency of Hyaluronic Acid for Tumor Targeting via CD44. Molecular Pharmaceutics, 2019, 16, 2481-2493.	4.6	81
29	Diffusion NMR Spectroscopy for the Characterization of the Size and Interactions of Colloidal Matter:  The Case of Vesicles and Nanoparticles. Journal of the American Chemical Society, 2004, 126, 2142-2147.	13.7	80
30	Atom Transfer Radical Polymerization as a Tool for Surface Functionalization. Advanced Materials, 2002, 14, 1239-1241.	21.0	77
31	Selective Targeting of a Novel Vasodilator to the Uterine Vasculature to Treat Impaired Uteroplacental Perfusion in Pregnancy. Theranostics, 2017, 7, 3715-3731.	10.0	76
32	A New Living Emulsion Polymerization Mechanism:Â Episulfide Anionic Polymerization. Macromolecules, 2002, 35, 8688-8693.	4.8	75
33	Lyotropic Behavior in Water of Amphiphilic ABA Triblock Copolymers Based on Poly(propylene sulfide) and Poly(ethylene glycol). Langmuir, 2002, 18, 8324-8329.	3.5	71
34	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	2.2	69
35	Preparation of Ligand-Free TiO ₂ (Anatase) Nanoparticles through a Nonaqueous Process and Their Surface Functionalization. Langmuir, 2008, 24, 6988-6997.	3.5	68
36	The CD44/integrins interplay and the significance of receptor binding and re-presentation in the uptake of RGD-functionalized hyaluronic acid. Biomaterials, 2012, 33, 1120-1134.	11.4	67

#	Article	IF	Citations
37	Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers. Journal of Materials Chemistry, 2006, 16, 1058-1066.	6.7	66
38	Mechanosensitive peptidegelation: mode of agitation controls mechanical properties and nano-scale morphology. Soft Matter, 2011, 7, 1732-1740.	2.7	63
39	Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter, 2011, 7, 2639.	2.7	61
40	Michael-Type Addition as a Tool for Surface Functionalization. Bioconjugate Chemistry, 2003, 14, 967-973.	3.6	60
41	Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. Journal of Controlled Release, 2018, 272, 114-144.	9.9	59
42	Poly(ethylene glycol) block copolymers. Reviews in Molecular Biotechnology, 2002, 90, 3-15.	2.8	58
43	Oxidantâ€Dependent REDOX Responsiveness of Polysulfides. Macromolecular Chemistry and Physics, 2012, 213, 2052-2061.	2.2	57
44	Thermotropic behaviour of covalent fullerene adducts displaying 4-cyano-4′-oxybiphenyl mesogens. Perkin Transactions II RSC, 2000, , 193-198.	1.1	56
45	<scp>HA</scp> â€ <scp>C</scp> oated Chitosan Nanoparticles for <scp>CD</scp> 44â€ <scp>M</scp> ediated Nucleic Acid Delivery. Macromolecular Bioscience, 2013, 13, 1671-1680.	4.1	54
46	Enhanced local bioavailability of single or compound drugs delivery to the inner ear through application of PLGA nanoparticles via round window administration. International Journal of Nanomedicine, 2014, 9, 5591.	6.7	53
47	Oxidation-responsiveness of nanomaterials for targeting inflammatory reactions. Pure and Applied Chemistry, 2008, 80, 1703-1718.	1.9	52
48	Reactive Oxygen Speciesâ€Responsive Nanoparticles for the Treatment of Ischemic Stroke. Advanced Therapeutics, 2019, 2, 1900038.	3.2	51
49	Oxidationâ€Responsive Materials: Biological Rationale, State of the Art, Multiple Responsiveness, and Open Issues. Macromolecular Rapid Communications, 2019, 40, e1800699.	3.9	51
50	Towards a fully synthetic substitute of alginate: Optimization of a thermal gelation/chemical cross-linking scheme (?tandem? gelation) for the production of beads and liquid-core capsules. Biotechnology and Bioengineering, 2004, 88, 740-749.	3.3	50
51	Chemical specificity in REDOX-responsive materials: the diverse effects of different Reactive Oxygen Species (ROS) on polysulfide nanoparticles. Polymer Chemistry, 2014, 5, 1393.	3.9	49
52	Hyaluronan/Tannic Acid Nanoparticles Via Catechol/Boronate Complexation as a Smart Antibacterial System. Macromolecular Bioscience, 2016, 16, 1815-1823.	4.1	48
53	Mesoscale modelling of near-contact interactions for complex flowing interfaces. Journal of Fluid Mechanics, 2019, 872, 327-347.	3.4	48
54	Yeast cells as microcapsules. Analytical tools and process variables in the encapsulation of hydrophobes in S. cerevisiae. Applied Microbiology and Biotechnology, 2012, 95, 1445-1456.	3.6	46

#	Article	IF	CITATION
55	Branched polyesters: Preparative strategies and applications. Advanced Drug Delivery Reviews, 2016, 107, 60-81.	13.7	46
56	Development of Chromogenic Copolymers for Optical Detection of Amines. Advanced Materials, 1998, 10, 1353-1357.	21.0	45
57	Glucose sensitivity through oxidation responsiveness. An example of cascade-responsive nano-sensors. Journal of Materials Chemistry, 2005, 15, 4006.	6.7	45
58	New Terthiophene Derivatives for Ultrahigh Molecular Weight Polyethylene-Based Absorption Polarizers. Macromolecules, 2001, 34, 2129-2137.	4.8	44
59	Functionalization of polysulfide nanoparticles and their performance as circulating carriers. Biomaterials, 2008, 29, 1958-1966.	11.4	44
60	A hydrogel system for stimulus-responsive, oxygen-sensitive in situ gelation. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 895-904.	3.5	42
61	Surface-Initiated ATRP Modification of Tissue Culture Substrates: Poly(glycerol monomethacrylate) as an Antifouling Surface. Biomacromolecules, 2009, 10, 3130-3140.	5. 4	41
62	Photopolymerization of Pluronic F127 diacrylate: a colloid-templated polymerization. Soft Matter, 2011, 7, 4928.	2.7	40
63	Nanomanufacturing through microfluidic-assisted nanoprecipitation: Advanced analytics and structure-activity relationships. International Journal of Pharmaceutics, 2017, 534, 97-107.	5.2	40
64	CD44 targeted delivery of siRNA by using HA-decorated nanotechnologies for KRAS silencing in cancer treatment. International Journal of Pharmaceutics, 2019, 561, 114-123.	5.2	40
65	Thick Coating and Functionalization of Organic Surfaces via ATRP in Water. Macromolecular Rapid Communications, 2002, 23, 417.	3.9	39
66	Luminescent nanocomposites containing CdS nanoparticles dispersed into vinyl alcohol based polymers. Reactive and Functional Polymers, 2008, 68, 1144-1151.	4.1	39
67	Polymeric micelles with dual thermal and reactive oxygen species (ROS)-responsiveness for inflammatory cancer cell delivery. Journal of Nanobiotechnology, 2017, 15, 39.	9.1	38
68	Chiral methacrylic polymers containing permanent dipole azobenzene chromophores. 13C NMR spectra and photochromic properties. Macromolecular Chemistry and Physics, 1997, 198, 1739-1752.	2.2	37
69	Inter-micellar dynamics in block copolymer micelles: FRET experiments of macroamphiphile and payload exchange. Reactive and Functional Polymers, 2011, 71, 303-314.	4.1	37
70	Myofibroblast Differentiation: Main Features, Biomedical Relevance, and the Role of Reactive Oxygen Species. Antioxidants and Redox Signaling, 2014, 21, 768-785.	5.4	37
71	Binding and Internalization in Receptorâ€√argeted Carriers: The Complex Role of CD44 in the Uptake of Hyaluronic Acidâ€Based Nanoparticles (siRNA Delivery). Advanced Healthcare Materials, 2019, 8, e1901182.	7.6	37
72	Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromolecular Bioscience, 2020, 20, e1900283.	4.1	37

#	Article	IF	Citations
73	Stimulusâ€responsive polymers based on 2â€hydroxypropyl acrylate prepared by RAFT polymerization. Journal of Polymer Science Part A, 2010, 48, 2032-2043.	2.3	36
74	Revisiting Boronate/Diol Complexation as a Double Stimulus-Responsive Bioconjugation. Bioconjugate Chemistry, 2017, 28, 1391-1402.	3.6	36
75	(Bio)Responsive nanoparticles. Current Opinion in Colloid and Interface Science, 2006, 11, 210-216.	7.4	35
76	Evidence and use of metal–chromophore interactions: luminescence dichroism of terthiophene-coated gold nanoparticles in polyethylene oriented films. Journal of Materials Chemistry, 2004, 14, 3495-3502.	6.7	34
77	Absorption and Emission Dichroism of Polyethylene Films with Molecularly Dispersed Push-Pull Terthiophenes. Macromolecular Chemistry and Physics, 2005, 206, 102-111.	2.2	33
78	Materials for microencapsulation: what toroidal particles ("doughnutsâ€) can do better than spherical beads. Soft Matter, 2010, 6, 4070.	2.7	33
79	Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. European Polymer Journal, 2021, 149, 110387.	5.4	33
80	Sol–gel synthesis at neutral pH in W/O microemulsion: A method for enzyme nanoencapsulation in silica gel nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 288, 52-61.	4.7	32
81	Advantages of Surfaceâ€Initiated ATRP (SIâ€ATRP) for the Functionalization of Electrospun Materials. Macromolecular Rapid Communications, 2013, 34, 51-56.	3.9	32
82	Structureâ^'Activity Relationship of New Nonlinear Optical Organic Materials Based on Pushâ^'Pull Azo Dyes. 3. Guestâ^'Host Systems. Macromolecules, 1998, 31, 2152-2159.	4.8	31
83	Plasticizer-Free Optode Membranes for Dissolved Amines Based on Copolymers from Alkyl Methacrylates and the Fluoro Reactand ETHT 4014. Analytical Chemistry, 1999, 71, 1534-1539.	6.5	31
84	Synthesis and characterisation of polyesters with nonlinear optical properties. Polymer, 1999, 40, 4923-4928.	3.8	30
85	Nonlinear optical properties of some side chain copolymers based on benzoxazole containing chromophores. Journal of Polymer Science Part A, 1999, 37, 603-608.	2.3	29
86	Fishing for fire: strategies for biological targeting and criteria for material design in antiâ€nflammatory therapies. Polymers for Advanced Technologies, 2014, 25, 478-498.	3.2	29
87	Influence of Primary Structure on Responsiveness. Oxidative, Thermal, and Thermo-Oxidative Responses in Polysulfides. Macromolecules, 2015, 48, 8108-8120.	4.8	29
88	The Effect of Branching (Star Architecture) on Poly(<scp>d</scp> , <scp>l</scp> -lactide) (PDLLA) Degradation and Drug Delivery. Biomacromolecules, 2017, 18, 728-739.	5.4	29
89	Selective synthesis of double temperature-sensitive polymer–peptide conjugates. Chemical Communications, 2008, , 4433.	4.1	28
90	Structure–activity relationship of new NLO organic materials based on push–pull azodyes: 4. Side chain polymers. Polymer, 2000, 41, 415-421.	3.8	27

#	Article	IF	Citations
91	Precise Determination of the Hydrophobic/Hydrophilic Junction in Polymeric Vesicles. Langmuir, 2003, 19, 4852-4855.	3.5	27
92	Peptide–PNIPAAm conjugate based hydrogels: synthesis and characterisation. Soft Matter, 2011, 7, 6025.	2.7	27
93	Hybrid sol–gel inorganic/gelatin porous fibres via solution blow spinning. Journal of Materials Science, 2017, 52, 9066-9081.	3.7	27
94	Microfluidic-assisted nanoprecipitation of (PEGylated) poly (d,l-lactic acid-co-caprolactone): Effect of macromolecular and microfluidic parameters on particle size and paclitaxel encapsulation. International Journal of Pharmaceutics, 2018, 548, 530-539.	5.2	27
95	Main Chain Polysulfoxides as Active †Stealth†Polymers with Additional Antioxidant and Anti-Inflammatory Behaviour. International Journal of Molecular Sciences, 2019, 20, 4583.	4.1	27
96	Colorectal tumor 3D <i>in vitro</i> models: advantages of biofabrication for the recapitulation of early stages of tumour development. Biomedical Physics and Engineering Express, 2018, 4, 045010.	1.2	26
97	Processable Fully Aromatic Quinoline-Based Polymers. Macromolecules, 2001, 34, 3607-3614.	4.8	25
98	Role of thiolâ€disulfide exchange in episulfide polymerization. Journal of Polymer Science Part A, 2008, 46, 2233-2249.	2.3	25
99	Avoiding Disulfides: Improvement of Initiation and Endâ€Capping Reactions in the Synthesis of Polysulfide Block Copolymers. Macromolecular Chemistry and Physics, 2009, 210, 447-456.	2.2	25
100	"Tandem―Nanomedicine Approach against Osteoclastogenesis: Polysulfide Micelles Synergically Scavenge ROS and Release Rapamycin. Biomacromolecules, 2020, 21, 305-318.	5.4	25
101	Microfluidic-assisted preparation of RGD-decorated nanoparticles: exploring integrin-facilitated uptake in cancer cell lines. Scientific Reports, 2020, 10, 14505.	3.3	25
102	Yeast Cells in Microencapsulation. General Features and Controlling Factors of the Encapsulation Process. Molecules, 2021, 26, 3123.	3.8	25
103	4-Vinylazobenzene:Â Polymerizability and Photochromic Properties of Its Polymers. Macromolecules, 1997, 30, 1298-1303.	4.8	24
104	Characterization of acrylic resins and fluoroelastomer blends as potential materials in stone protection. Polymer International, 2000, 49, 888-892.	3.1	24
105	A new process for cell microencapsulation and other biomaterial applications: Thermal gelation and chemical cross-linking in "tandem― Journal of Materials Science: Materials in Medicine, 2005, 16, 559-565.	3.6	24
106	Thermally-induced glass formation from hydrogel nanoparticles. Soft Matter, 2006, 2, 1067.	2.7	24
107	Cationic Temperature-Responsive Poly(N-isopropyl acrylamide) Graft Copolymers: from Triggered Association to Gelation. Langmuir, 2008, 24, 7099-7106.	3.5	24
108	Rheological and Turbidity Study of Fibrin Hydrogels. Macromolecular Symposia, 2013, 334, 117-125.	0.7	24

#	Article	IF	Citations
109	Mannosylation Allows for Synergic (CD44/Câ€Type Lectin) Uptake of Hyaluronic Acid Nanoparticles in Dendritic Cells, but Only upon Correct Ligand Presentation. Advanced Healthcare Materials, 2016, 5, 966-976.	7.6	24
110	Tyrosinase-Mediated Bioconjugation. A Versatile Approach to Chimeric Macromolecules. Bioconjugate Chemistry, 2018, 29, 2550-2560.	3.6	24
111	The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency. Beilstein Journal of Nanotechnology, 2019, 10, 2594-2608.	2.8	22
112	A study of thermoassociative gelation of aqueous cationic poly(N-isopropyl acrylamide) graft copolymer solutions. Polymer, 2009, 50, 1456-1462.	3.8	21
113	Triazoloacridin-6-ones as novel inhibitors of the quinone oxidoreductases NQO1 and NQO2. Bioorganic and Medicinal Chemistry, 2010, 18, 696-706.	3.0	21
114	Characterization of the Network Structure of <scp>PEG</scp> Diacrylate Hydrogels Formed in the Presence of Nâ€Vinyl Pyrrolidone. Macromolecular Reaction Engineering, 2014, 8, 314-328.	1.5	21
115	Self-Replicating RNA Vaccine Delivery to Dendritic Cells. Methods in Molecular Biology, 2017, 1499, 37-75.	0.9	21
116	Cellular responses of hyaluronic acid-coated chitosan nanoparticles. Toxicology Research, 2018, 7, 942-950.	2.1	21
117	Linear, Star, and Comb Oxidationâ€Responsive Polymers: Effect of Branching Degree and Topology on Aggregation and Responsiveness. Macromolecular Rapid Communications, 2016, 37, 1918-1925.	3.9	20
118	Keratin–cinnamon essential oil biocomposite fibrous patches for skin burn care. Materials Advances, 2020, 1, 1805-1816.	5.4	20
119	Investigation on the wettability properties of thin films of methacrylic polymers with partially fluorinated side chains. Macromolecular Chemistry and Physics, 1998, 199, 2425-2431.	2.2	19
120	Synthesis and Properties of Amphiphilic Star Polysulfides. Macromolecular Bioscience, 2007, 7, 987-998.	4.1	19
121	Spectrophotometric analysis of nucleic acids: oxygenation-dependant hyperchromism of DNA. Analytical and Bioanalytical Chemistry, 2010, 396, 2331-2339.	3.7	19
122	PEGylation of Nanosubstrates (Titania) with Multifunctional Reagents: At the Crossroads between Nanoparticles and Nanocomposites. Langmuir, 2012, 28, 11490-11501.	3.5	19
123	Thiol-based michael-type addition. A systematic evaluation of its controlling factors. Tetrahedron, 2020, 76, 131637.	1.9	19
124	Probing (macro)molecular transport through cell walls. Faraday Discussions, 2008, 139, 199.	3.2	18
125	Temperature-Triggered Gelation of Aqueous Laponite Dispersions Containing a Cationic Poly(<i>N</i> -isopropyl acrylamide) Graft Copolymer. Langmuir, 2009, 25, 490-496.	3.5	18
126	Structure-Activity Relationship of New Organic NLO Materials Based on Push-Pull Azodyes. 1. Synthesis and molecular properties of the dyes. Journal FÃ $\frac{1}{4}$ r Praktische Chemie, Chemiker-Zeitung, 1998, 340, 122-128.	0.5	16

#	Article	IF	CITATION
127	Synthesis and polymerization of amphiphilic methacrylates containing permanent dipole azobenzene chromophores. Journal of Polymer Science Part A, 2001, 39, 2957-2977.	2.3	16
128	Investigating the Interactions of Hyaluronan Derivatives with Biomolecules. The Use of Diffusional NMR Techniques. Macromolecular Bioscience, 2006, 6, 611-622.	4.1	16
129	Combination of Episulfide Ringâ€Opening Polymerization With ATRP for the Preparation of Amphiphilic Block Copolymers. Macromolecular Rapid Communications, 2013, 34, 156-162.	3.9	15
130	Angiogenesis and tissue formation driven by an arteriovenous loop in the mouse. Scientific Reports, 2019, 9, 10478.	3.3	15
131	Functionalized Enzyme-Responsive Biomaterials to Model Tissue Stiffening in vitro. Frontiers in Bioengineering and Biotechnology, 2020, 8, 208.	4.1	15
132	Supported ATRP and giant polymers. Chemical Communications, 2003, , 1600.	4.1	14
133	Receptorâ€Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. Advanced Biology, 2018, 2, 1800049.	3.0	14
134	Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assembly. Langmuir, 2019, 35, 13318-13331.	3.5	14
135	Emulsion Macromonomer Cross-Linking. A Preparative Method for Oxidation-Responsive Nanoparticles with a Controlled Network Structure. Langmuir, 2007, 23, 12309-12317.	3.5	13
136	Thermally-responsive surfaces comprising grafted poly(N-isopropylacrylamide) chains: Surface characterisation and reversible capture of dispersed polymer particles. Journal of Colloid and Interface Science, 2009, 340, 166-175.	9.4	13
137	Influence of Chain Primary Structure and Topology (Branching) on Crystallization and Thermal Properties: The Case of Polysulfides. Macromolecules, 2019, 52, 2093-2104.	4.8	13
138	Molecularly controlled blending of metals and organic metals with polyolefins for the preparation of materials with modulated optical properties. Macromolecular Symposia, 2003, 204, 59-70.	0.7	12
139	Amphiphilic star block copolymers: Influence of branching on lyotropic/interfacial properties. Polymer, 2009, 50, 2863-2873.	3.8	12
140	Synthesis, self-assembly and (absence of) protein interactions of poly(glycerol methacrylate)–silicone macro-amphiphiles. Polymer Chemistry, 2013, 4, 3458.	3.9	12
141	An Orthogonal Click-Chemistry Approach to Design Poly(glycerol monomethacrylate)-based Nanomaterials for Controlled Immunostimulation. Macromolecular Bioscience, 2014, 14, 1528-1538.	4.1	12
142	Fibroblast migration correlates with matrix softness. A study in knob-hole engineered fibrin. APL Bioengineering, 2018, 2, 036102.	6.2	12
143	CXCL12-PLGA/Pluronic Nanoparticle Internalization Abrogates CXCR4-Mediated Cell Migration. Nanomaterials, 2020, 10, 2304.	4.1	12
144	Variations in the diallyldimethylammonium chloride (DADMAC) polymers architectures: PEG/DADMAC blocks and partially quaternarized polymers. Macromolecular Chemistry and Physics, 1999, 200, 1068-1073	2.2	11

#	Article	IF	Citations
145	Dissolved oxygen alteration of the spectrophotometric analysis and quantification of nucleic acid solutions. Biochemical Society Transactions, 2009, 37, 466-470.	3.4	11
146	Mitsunobu Reaction: A Versatile Tool for PEG End Functionalization. Macromolecular Rapid Communications, 2015, 36, 1829-1835.	3.9	11
147	Polysulfide Networks. In Situ Formation and Characterization of the Elastomeric Behavior. Macromolecules, 2007, 40, 5141-5149.	4.8	10
148	Fibronectin localization and fibrillization are affected by the presence of serum in culture media. Scientific Reports, 2015, 5, 9278.	3.3	10
149	Methacrylic polymers containing permanent dipole azobenzene chromophores spaced from the main chain.13C NMR spectra and photochromic properties. Macromolecular Chemistry and Physics, 1999, 200, 601-608.	2.2	9
150	Blends of functionalized terthiophenes with polyethylene as materials for new linear polarizers. Polymers for Advanced Technologies, 2001, 12, 223-230.	3.2	9
151	Dual thermo/oxidation-responsive block copolymers with self-assembly behaviour and synergistic release. Reactive and Functional Polymers, 2017, 110, 55-61.	4.1	9
152	Double-responsive hyaluronic acid-based prodrugs for efficient tumour targeting. Materials Science and Engineering C, 2021, 131, 112475.	7. 3	9
153	Photomodulation of the hydrophilic properties of acrylic polymers containing side-chain azobenzene chromophores. Canadian Journal of Chemistry, 1995, 73, 1849-1854.	1.1	8
154	Water-Dispersible, Ligand-Free, and Extra-Small (<10 nm) Titania Nanoparticles: Control Over Primary, Secondary, and Tertiary Agglomeration Through a Modified "Non-Aqueous―Route. Advanced Functional Materials, 2014, 24, 993-1003.	14.9	8
155	Photochromic polymers: effects of structure and environment on photoresponsiveness. Polymers for Advanced Technologies, 1995, 6, 32-41.	3.2	7
156	Liquid crystal polymers containing permanent dipole azobenzene chromophores. Macromolecular Symposia, 1999, 137, 33-46.	0.7	7
157	Glyco-Materials: Using Saccharides and Their Interactions for Designing New Biomaterials. Macromolecular Bioscience, 2006, 6, 575-578.	4.1	7
158	Surface modification of silicone via colloidal deposition of amphiphilic block copolymers. Polymer Chemistry, 2014, 5, 6687-6701.	3.9	7
159	Disulfide-Mediated Bioconjugation: Disulfide Formation and Restructuring on the Surface of Nanomanufactured (Microfluidics) Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26607-26618.	8.0	7
160	Versatile Preparation of Branched Polylactides by Low-Temperature, Organocatalytic Ring-Opening Polymerization in <i>N</i> -Methylpyrrolidone and Their Surface Degradation Behavior. Macromolecules, 2021, 54, 9482-9495.	4.8	7
161	Assessment of Nanomaterials Cytotoxicity and Internalization. Methods in Molecular Biology, 2011, 695, 243-259.	0.9	6
162	Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks., 2002,, 203-210.		5

#	Article	IF	CITATIONS
163	Colloidal thermoresponsive gel forming hybrids. Journal of Colloid and Interface Science, 2010, 349, 527-536.	9.4	5
164	Binary behaviour of an oxidation-responsive MRI nano contrast agent. Chemical Communications, 2015, 51, 1074-1076.	4.1	5
165	Phospholipid-mediated exfoliation as a facile preparation method for graphene suspensions. RSC Advances, 2018, 8, 19220-19225.	3.6	5
166	Tuning the properties of hybrid SiO2/ poly(glycerol monomethacrylate) nanoparticles for enzyme nanoencapsulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123734.	4.7	5
167	Synthesis and photobehaviour of hydrophilic acrylic polymers containing azobenzene groups. Macromolecular Chemistry and Physics, 1995, 196, 3229-3242.	2.2	4
168	Endâ€group rearrangements in poly(propylene sulfide) matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight analysis. Experimental evidence and possible mechanisms. Rapid Communications in Mass Spectrometry, 2012, 26, 2158-2164.	1.5	4
169	Branched Macromolecular Structures and their Bioâ€applications. Macromolecular Bioscience, 2007, 7, 965-967.	4.1	3
170	Quantitative Descriptors for the Effect of Nature/Mechanical Properties of Solid Substrates on Fibroblast Morphology. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 265-272.	1.6	3
171	The antibiofilm effects of Byotrolâ,,¢ G32. Journal of Applied Microbiology, 2013, 114, 1285-1293.	3.1	2
172	Targeted nanoparticle delivery of a novel nitric oxide donor increased fetal weight in a mouse model of fetal growth restriction. Placenta, 2016, 45, 68.	1.5	2
173	Cavitation-Assisted Micromixing for Polymeric Nanoparticle Generation. Proceedings (mdpi), 2018, 2, .	0.2	2
174	Hyaluronic Acid (HA) Receptors and the Motility of Schwann Cell(-Like) Phenotypes. Cells, 2020, 9, 1477.	4.1	2
175	Happy Birthday, MBS!. Macromolecular Bioscience, 2010, 10, 7-11.	4.1	1
176	Injectable nanotechnology. , 2011, , 298-322.		1
177	Targeted delivery of insulin-like growth factor-II to the placenta using homing peptide-decorated liposomes increases placental weight. Placenta, 2014, 35, A9.	1.5	1
178	Branched amphiphilic polysulfides: influence of macromolecular architecture on self-assembly and oxidation responsiveness. Materials Research Society Symposia Proceedings, 2015, 1718, 55-63.	0.1	1
179	Chitosan $\hat{\mathbb{Q}}^2$ -glycerophosphate-based microparticles manufactured by laminar jet break-up technology. Journal of Microencapsulation, 2018, 35, 407-420.	2.8	1
180	Hyaluronic acid carrier-cell interactions: a tri-culture model of the tumour microenvironment to study siRNA delivery under flow conditions. International Journal of Nano and Biomaterials, 2019, 8, 106.	0.1	1

#	Article	IF	CITATIONS
181	Biofunctional few-layer metal dichalcogenides and related heterostructures produced by direct aqueous exfoliation using phospholipids. RSC Advances, 2019, 9, 37061-37066.	3.6	1
182	The contracture-in-a-well. An in vitro model distinguishes bulk and interfacial processes of irreversible (fibrotic) cell-mediated contraction. Materials Science and Engineering C, 2022, 133, 112661.	7.3	1
183	Combining tissue engineering and drug delivery. , 2007, , 129-152.		O
184	Biomimetic synthesis of calcium carbonate bilayers interfaced by a diblock copolymer template. Zeitschrift Fur Kristallographie - Crystalline Materials, 2012, 227, 739-743.	0.8	0
185	Smart Nano-Systems and Inflammatory Reactions. Advanced Materials Research, 0, 745, 167-172.	0.3	O
186	Targeted placental delivery of insulin-like growth factor-II increases fetal weight in PO mice. Placenta, 2015, 36, A6.	1.5	0
187	Evaluating the efficiency of hyaluronic acid for specific tumour targeting. European Journal of Cancer, 2016, 61, S197.	2.8	0
188	20 Years of Biopolymers, Biomaterials, and Biomimetics. Macromolecular Bioscience, 2020, 20, e1900421.	4.1	0