Michael Janitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4730925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA polyadenylation patterns in the human transcriptome. Gene, 2022, 816, 146133.	2.2	4
2	Proteomics and Transcriptomics of the Hippocampus and Cortex in SUDEP and High-Risk SUDEP Patients. Neurology, 2021, 96, e2639-e2652.	1.1	24
3	Coding and non-coding transcriptome of mesial temporal lobe epilepsy: Critical role of small non-coding RNAs. Neurobiology of Disease, 2020, 134, 104612.	4.4	33
4	Neural circular transcriptomes across mammalian species. Genomics, 2020, 112, 1162-1166.	2.9	15
5	Cell type-specific circular RNA expression in human glial cells. Genomics, 2020, 112, 5265-5274.	2.9	15
6	Analysis of the Circular Transcriptome in the Synaptosomes of Aged Mice. Neuroscience, 2020, 449, 202-213.	2.3	6
7	Cell Adhesion Molecules and Protein Synthesis Regulation in Neurons. Frontiers in Molecular Neuroscience, 2020, 13, 592126.	2.9	16
8	Identification of Specific Circular RNA Expression Patterns and MicroRNA Interaction Networks in Mesial Temporal Lobe Epilepsy. Frontiers in Genetics, 2020, 11, 564301.	2.3	11
9	Early transcriptome changes in response to chemical long-term potentiation induced via activation of synaptic NMDA receptors in mouse hippocampal neurons. Genomics, 2019, 111, 1676-1686.	2.9	10
10	Changes in circular RNA expression patterns during human foetal brain development. Genomics, 2019, 111, 753-758.	2.9	50
11	Circular RNAs in Human Health and Disease. , 2019, , 119-132.		0
12	Tropomyosin isoforms have specific effects on the transcriptome of undifferentiated and differentiated B35 neuroblastoma cells. FEBS Open Bio, 2018, 8, 570-583.	2.3	4
13	Region-specific expression of circular RNAs in the mouse brain. Neuroscience Letters, 2018, 666, 44-47.	2.1	16
14	Multiple System Atrophy: Many Lessons from the Transcriptome. Neuroscientist, 2018, 24, 294-307.	3.5	7
15	Microexons: novel regulators of the transcriptome. Journal of Human Transcriptome, 2018, 2, 1-6.	1.0	9
16	Analysis of the circular RNA transcriptome in endometrial cancer. Oncotarget, 2018, 9, 5786-5796.	1.8	58
17	RNA sequencing reveals pronounced changes in the noncoding transcriptome of aging synaptosomes. Neurobiology of Aging, 2017, 56, 67-77.	3.1	17
18	Transcriptome landscape of long intergenic non-coding RNAs in endometrial cancer. Gynecologic Oncology, 2017, 147, 654-662.	1.4	55

#	Article	IF	CITATIONS
19	The emerging role of circular RNAs in transcriptome regulation. Genomics, 2017, 109, 401-407.	2.9	155
20	Non-coding transcriptome in brain aging. Aging, 2017, 9, 1943-1944.	3.1	5
21	LINC00507 Is Specifically Expressed in the Primate Cortex and Has Age-Dependent Expression Patterns. Journal of Molecular Neuroscience, 2016, 59, 431-439.	2.3	14
22	Characterization of circular <scp>RNA</scp> s landscape in multiple system atrophy brain. Journal of Neurochemistry, 2016, 139, 485-496.	3.9	79
23	The emerging role of long non-coding RNAs in endometrial cancer. Cancer Genetics, 2016, 209, 445-455.	0.4	39
24	Transcriptional regulation of long-term potentiation. Neurogenetics, 2016, 17, 201-210.	1.4	13
25	Strand-specific RNA-sequencing analysis of multiple system atrophy brain transcriptome. Neuroscience, 2016, 322, 234-250.	2.3	24
26	The Antisense Transcriptome and the Human Brain. Journal of Molecular Neuroscience, 2016, 58, 1-15.	2.3	12
27	RNA-Sequencing to Elucidate Early Patterns of Dysregulation Underlying the Onset of Alzheimer's Disease. Methods in Molecular Biology, 2016, 1303, 327-347.	0.9	5
28	Transcriptome analysis of grey and white matter cortical tissue in multiple system atrophy. Neurogenetics, 2015, 16, 107-122.	1.4	33
29	Long intervening non-coding RNA 00320 is human brain-specific and highly expressed in the cortical white matter. Neurogenetics, 2015, 16, 201-213.	1.4	18
30	High expression of long intervening non-coding RNA OLMALINC in the human cortical white matter is associated with regulation of oligodendrocyte maturation. Molecular Brain, 2015, 8, 2.	2.6	25
31	Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD). Neurobiology of Disease, 2015, 82, 445-454.	4.4	33
32	Conservation and tissue-specific transcription patterns of long noncoding RNAs. Journal of Human Transcriptome, 2015, 1, 2-9.	1.0	79
33	The role of transcriptional control in multiple system atrophy. Neurobiology of Aging, 2015, 36, 394-400.	3.1	10
34	The alternative splicing of the apolipoprotein E gene is unperturbed in the brains of Alzheimer's disease patients. Molecular Biology Reports, 2014, 41, 6365-6376.	2.3	13
35	Pathway Analysis of the Human Brain Transcriptome in Disease. Journal of Molecular Neuroscience, 2013, 51, 28-36.	2.3	17
36	RNA-Seq analysis of the parietal cortex in Alzheimer's disease reveals alternatively spliced isoforms related to lipid metabolism. Neuroscience Letters, 2013, 536, 90-95.	2.1	77

#	Article	IF	CITATIONS
37	Sequencing of hippocampal and cerebellar transcriptomes provides new insights into the complexity of gene regulation in the human brain. Neuroscience Letters, 2013, 541, 263-268.	2.1	8
38	Unique Transcriptome Patterns of the White and Grey Matter Corroborate Structural and Functional Heterogeneity in the Human Frontal Lobe. PLoS ONE, 2013, 8, e78480.	2.5	40
39	Strand-Specific RNA-Seq Provides Greater Resolution of Transcriptome Profiling. Current Genomics, 2013, 14, 173-181.	1.6	77
40	Alternative splicing of mRNA in the molecular pathology of neurodegenerative diseases. Neurobiology of Aging, 2012, 33, 1012.e11-1012.e24.	3.1	88
41	The Role of RNA Structure in Posttranscriptional Regulation of Gene Expression. Journal of Genetics and Genomics, 2012, 39, 535-543.	3.9	34
42	Single-Cell and Regional Gene Expression Analysis in Alzheimer's Disease. Cellular and Molecular Neurobiology, 2012, 32, 477-489.	3.3	2
43	Assessing Epigenetic Information. , 2011, , 173-181.		5
44	Understanding the pathogenesis of Alzheimer's disease: will RNA‣eq realize the promise of transcriptomics?. Journal of Neurochemistry, 2011, 116, 937-946.	3.9	65
45	Whole Transcriptome Sequencing Reveals Gene Expression and Splicing Differences in Brain Regions Affected by Alzheimer's Disease. PLoS ONE, 2011, 6, e16266.	2.5	266
46	Apoptosis screening of human chromosome 21 proteins reveals novel cell death regulators. Molecular Biology Reports, 2010, 37, 3381-3387.	2.3	10
47	Transcriptome profiling in neurodegenerative disease. Journal of Neuroscience Methods, 2010, 193, 189-202.	2.5	57
48	Functional analysis and identification of cis-regulatory elements of human chromosome 21 gene promoters. Nucleic Acids Research, 2010, 38, 6112-6123.	14.5	19
49	Screening of human gene promoter activities using transfected-cell arrays. Gene, 2010, 450, 48-54.	2.2	8
50	Comparative analysis of an experimental subcellular protein localization assay and in silico prediction methods. Journal of Molecular Histology, 2009, 40, 343-352.	2.2	3
51	Follistatin antagonizes transforming growth factor-β3-induced epithelial–mesenchymal transition in vitro: implications for murine palatal development supported by microarray analysis. Differentiation, 2008, 76, 404-416.	1.9	32
52	High-throughput mammalian two-hybrid screening for protein-protein interactions using transfected cell arrays. BMC Genomics, 2008, 9, 68.	2.8	25
53	Autoregulation of Th1-mediated inflammation by <i>twist1 </i> . Journal of Experimental Medicine, 2008, 205, 1889-1901.	8.5	96
54	Oligonucleotide Fingerprinting of Arrayed Genomic DNA Sequences Using LNA-Modified Hybridization Probes. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 269-276.	1.1	3

#	Article	IF	CITATIONS
55	Assigning functions to genes—the main challenge of the post-genomics era. , 2007, 159, 115-129.		7
56	High-Throughput RNA Interference in Functional Genomics. , 2006, , 97-104.		9
57	Liquid-based hybridization assay with real-time detection in miniaturized array platforms. New Biotechnology, 2006, 23, 35-40.	2.7	3
58	Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins. BMC Genomics, 2006, 7, 155.	2.8	31
59	A second generation radiation hybrid map to aid the assembly of the bovine genome sequence. BMC Genomics, 2006, 7, 283.	2.8	26
60	LNA-Modified Oligodeoxynucleotide Hybridization with DNA Microarrays Printed on Nanoporous Membrane Slides. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 591-597.	1.1	1
61	High-throughput subcellular protein localization using cell arrays. Biochemical Society Transactions, 2005, 33, 1407.	3.4	9
62	Functional genomics using high-throughput RNA interference. Drug Discovery Today, 2005, 10, 205-212.	6.4	44
63	Mouse protein arrays from a TH1 cell cDNA library for antibody screening and serum profiling. Genomics, 2005, 85, 285-296.	2.9	31
64	High-throughput gene silencing using cell arrays. Oncogene, 2004, 23, 8353-8358.	5.9	50
65	Establishment of T cell-specific and natural killer cell-specific unigene sets: towards high-throughput genomics of leukaemia. International Journal of Immunogenetics, 2004, 31, 253-257.	1.2	0
66	Multiplexed hybridizations of positively charge-tagged peptide nucleic acids detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 1821-1829.	1.5	10
67	Honeybee (Apis mellifera L.) mrjp gene family: computational analysis of putative promoters and genomic structure of mrjp1, the gene coding for the most abundant protein of larval food. Gene, 2003, 303, 165-175.	2.2	32
68	Analysis of the Sequence Polymorphism within Class II Transactivator Gene Promoters. Experimental and Clinical Immunogenetics, 2001, 18, 199-205.	1.2	10
69	Expression of the H2-Ea gene is modulated by a polymorphic transcriptional enhancer. Immunogenetics, 1998, 48, 266-272.	2.4	10
70	Three alternatively spliced variants of the gene coding for the human bone morphogenetic protein-1. Journal of Molecular Medicine, 1998, 76, 141-146.	3.9	20
71	The Distribution of Variation in Regulatory Gene Segments, as Present in MHC Class II Promoters. Genome Research, 1998, 8, 124-134.	5.5	43
72	Polymorphic MHC class II promoters exhibit distinct expression pattern in various antigenâ€presenting cell lines. Tissue Antigens, 1997, 49, 99-106.	1.0	30

#	Article	IF	CITATIONS
73	Enhancer activity in the 5′ untranslated region of the H2-Eb gene. Immunogenetics, 1997, 45, 432-435.	2.4	2
74	Analysis of mRNA expression for interleukin-1 genes on human testicular cells. Immunology Letters, 1995, 48, 139-143.	2.5	8
75	Analysis of mRNA for class I HLA on human gametogenic cells. Molecular Reproduction and Development, 1994, 38, 231-237.	2.0	31
76	In situ localization of HLA class I mRNA in human testis. Experimental and Clinical Immunogenetics, 1993, 10, 202-7.	1.2	5