List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4730805/publications.pdf Version: 2024-02-01

		44069	58581
317	8,691	48	82
papers	citations	h-index	g-index
323	323	323	6359
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Real-time Raman analysis of the hydrolysis of formaldehyde oligomers for enhanced collagen fixation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120285.	3.9	2
2	In-situ DNA detection with an interferometric-type optical sensor based on tapered exposed core microstructured optical fiber. Sensors and Actuators B: Chemical, 2022, 351, 130942.	7.8	37
3	Sensing Intra―and Extraâ€Cellular Ca ²⁺ in the Islet of Langerhans. Advanced Functional Materials, 2022, 32, 2106020.	14.9	0
4	Controlled delivery of quantum dots using microelectrophoresis technique: Intracellular behavior and preservation of cell viability. Bioelectrochemistry, 2022, 144, 108035.	4.6	0
5	Simultaneous Measurement of Temperature and Relative Humidity Using Cascaded C-shaped Fabry-Perot interferometers. Journal of Lightwave Technology, 2022, 40, 1209-1215.	4.6	24
6	Plug-in label-free optical fiber DNA hybridization sensor based on C-type fiber Vernier effect. Sensors and Actuators B: Chemical, 2022, 354, 131212.	7.8	26
7	Oxide glass and optical fiber fabrication. , 2022, , 111-176.		1
8	Tailored Multiâ€Color Dispersive Wave Formation in Quasiâ€Phaseâ€Matched Exposed Core Fibers. Advanced Science, 2022, 9, e2103864.	11.2	6
9	Temperature-Compensated Interferometric High-Temperature Pressure Sensor Using a Pure Silica Microstructured Optical Fiber. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	4.7	16
10	Mid-infrared chalcogenide polarization-maintaining single-mode fiber. , 2022, , .		0
11	Lasing from Narrow Bandwidth Light-Emitting One-Dimensional Nanoporous Photonic Crystals. ACS Photonics, 2022, 9, 1226-1239.	6.6	5
12	Development of lowâ€loss leadâ€germanate glass for midâ€infrared fiber optics: II. preform extrusion and fiber fabrication. Journal of the American Ceramic Society, 2021, 104, 833-850.	3.8	12
13	Development of Iowâ€loss leadâ€germanate glass for midâ€infrared fiber optics: I. glass preparation optimization. Journal of the American Ceramic Society, 2021, 104, 860-876.	3.8	9
14	Hollow Core Inhibited Coupled Antiresonant Terahertz Fiber: A Numerical and Experimental Study. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 245-260.	3.1	24
15	Precise on-Fiber Plasmonic Spectroscopy Using a Gradient-Index Microlens. Journal of Lightwave Technology, 2021, 39, 270-274.	4.6	0
16	Longitudinally thickness-controlled nanofilms on exposed core fibres enabling spectrally flattened supercontinuum generation. Light Advanced Manufacturing, 2021, 2, 1.	5.1	2
17	Graded Nanofilm Controlled Dispersion and Supercontinuum Generation in Exposed Core Fibers. , 2021, , .		0
18	Correction to: "Experimental Study on Glass and Polymers: Determining the Optimal Material for Potential Use in Terahertz Technology― IEEE Access, 2021, 9, 2705-2705.	4.2	0

#	Article	IF	CITATIONS
19	Two-dimensional mapping of surface scatterers on an optical fiber core using selective mode launching. APL Photonics, 2021, 6, 026105.	5.7	1
20	Investigation of oversized channels in tubular fibre drawing. Optical Materials Express, 2021, 11, 905.	3.0	2
21	Cytoplasmic delivery of quantum dots via microelectrophoresis technique. Electrophoresis, 2021, 42, 1247-1254.	2.4	1
22	Sensing in the presence of strong noise by deep learning of dynamic multimode fiber interference. Photonics Research, 2021, 9, B109.	7.0	42
23	Preferential coupling of diamond NV centres in step-index fibres. Optics Express, 2021, 29, 14425.	3.4	5
24	Novel concepts for fabrication and applications of fibers using high-index heavy metal oxide glasses. , 2021, , .		0
25	Scalable Integrated Waveguide with CVD-Grown MoS2 and WS2 Monolayers on Exposed-Core Fibers. , 2021, , .		0
26	Whispering gallery mode excitation using exposed-core fiber. Optics Express, 2021, 29, 23549.	3.4	8
27	In Situ Temperature-Compensated DNA Hybridization Detection Using a Dual-Channel Optical Fiber Sensor. Analytical Chemistry, 2021, 93, 10561-10567.	6.5	51
28	Exposed-core fiber multimode interference sensor. Results in Optics, 2021, 5, 100125.	2.0	6
29	Extruded suspended core fibers from lanthanum-aluminum-silicate glass. Optical Materials Express, 2021, 11, 142.	3.0	3
30	Singleâ€Step Tabletop Fabrication for Lowâ€Attenuation Terahertz Special Optical Fibers. Advanced Photonics Research, 2021, 2, 2100165.	3.6	2
31	Microfluidic Raman Sensing Using a Single Ring Negative Curvature Hollow Core Fiber. Biosensors, 2021, 11, 430.	4.7	3
32	A Fibre-Optic Platform for Sensing Nitrate Using Conducting Polymers. Sensors, 2021, 21, 138.	3.8	7
33	Flexible integration of metallic nanostructures on fiber tips for plasmonic sensing. , 2021, , .		1
34	Simultaneous Measurement of Temperature and Refractive Index Using an Exposed Core Microstructured Optical Fiber. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-7.	2.9	34
35	Raman Spectroscopy of Formamidinium-Based Lead Halide Perovskite Single Crystals. Journal of Physical Chemistry C, 2020, 124, 2265-2272.	3.1	44
36	A carbonâ€nanofiber glass composite with high electrical conductivity. International Journal of Applied Glass Science, 2020, 11, 590-600.	2.0	4

#	Article	IF	CITATIONS
37	Distributed optical fiber sensing of micron-scale particles. Sensors and Actuators A: Physical, 2020, 303, 111762.	4.1	9
38	MoS2-enhanced epoxy-based plasmonic fiber-optic sensor for selective and sensitive detection of methanol. Sensors and Actuators B: Chemical, 2020, 305, 127513.	7.8	20
39	Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors. Advanced Materials, 2020, 32, e2003826.	21.0	31
40	Refractive Index and Temperature Sensing with Sagnac-Mach Zehnder Hybrid Fiber Interferometer. , 2020, , .		0
41	Integrated Photonics: Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors (Adv. Mater. 47/2020). Advanced Materials, 2020, 32, 2070354.	21.0	0
42	Fluorescent diamond microparticle doped glass fiber for magnetic field sensing. APL Materials, 2020, 8, .	5.1	24
43	Wet chemical etching of single-bore microstructured silicon dioxide fibers. Physics of Fluids, 2020, 32, 073314.	4.0	1
44	All-fiber all-optical quantitative polymerase chain reaction (qPCR). Sensors and Actuators B: Chemical, 2020, 323, 128681.	7.8	27
45	Dynamic in vivo protein carbonyl biosensor for measuring oxidative stress. Medical Devices & Sensors, 2020, 3, e10135.	2.7	1
46	Mechanistic insight into the non-hydrolytic sol–gel process of tellurite glass films to attain a high transmission. RSC Advances, 2020, 10, 2404-2415.	3.6	2
47	Ultra-simplified Single-Step Fabrication of Microstructured Optical Fiber. Scientific Reports, 2020, 10, 9678.	3.3	27
48	Temperature-Compensated Refractive Index Measurement Using a Dual Fabry–Perot Interferometer Based on C-Fiber Cavity. IEEE Sensors Journal, 2020, 20, 6408-6413.	4.7	37
49	Palladium speciation in UVâ€ŧransparent glasses. Journal of the American Ceramic Society, 2020, 103, 4214-4223.	3.8	5
50	Resonanceâ€Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers. Laser and Photonics Reviews, 2020, 14, 1900418.	8.7	6
51	Resist-free nanoimprinting on optical fibers for plasmonic optrodes. Applied Materials Today, 2020, 20, 100751.	4.3	4
52	Flexible Plasmonic Tapes with Nanohole and Nanoparticle Arrays for Refractometric and Strain Sensing. ACS Applied Nano Materials, 2020, 3, 8242-8246.	5.0	19
53	Electrochemical plasmonic optical fiber probe for real-time insight into coreactant electrochemiluminescence. Sensors and Actuators B: Chemical, 2020, 321, 128469.	7.8	7
54	Silk: A bio-derived coating for optical fiber sensing applications. Sensors and Actuators B: Chemical, 2020, 311, 127864.	7.8	24

#	Article	IF	CITATIONS
55	Field Deployable Method for Gold Detection Using Gold Pre-Concentration on Functionalized Surfaces. Sensors, 2020, 20, 492.	3.8	3
56	A Multiplexed Microfluidic Platform toward Interrogating Endocrine Function: Simultaneous Sensing of Extracellular Ca ²⁺ and Hormone. ACS Sensors, 2020, 5, 490-499.	7.8	6
57	Experimental Study on Glass and Polymers: Determining the Optimal Material for Potential Use in Terahertz Technology. IEEE Access, 2020, 8, 97204-97214.	4.2	56
58	Compact plasmonic fiber tip for sensitive and fast humidity and human breath monitoring. Optics Letters, 2020, 45, 985.	3.3	18
59	Multimode exposed core fiber specklegram sensor. Optics Letters, 2020, 45, 3212.	3.3	30
60	Spectroscopic analysis and laser simulations of Yb ³⁺ /Ho ³⁺ co-doped lead-germanate glass. Optical Materials Express, 2020, 10, 2819.	3.0	12
61	Freestanding metal nanohole array for high-performance applications. Photonics Research, 2020, 8, 1749.	7.0	7
62	Realization of a Single-Layer Terahertz Magnetic Mirror. IEEE Access, 2020, 8, 229108-229116.	4.2	2
63	Nitrate sensing using optical properties of PEDOT at the tip of the fibre. , 2020, , .		0
64	Photoluminescence and Third Harmonic Generation in Directly-Grown MoS2 and WS2 Exposed-Core Fibers. , 2020, , .		0
65	Single-peak fiber Bragg gratings in suspended-core optical fibers. Optics Express, 2020, 28, 23354.	3.4	3
66	Development of innovative tools for investigation of nutrient-gut interaction. World Journal of Gastroenterology, 2020, 26, 3562-3576.	3.3	8
67	Luminescence effects in reactive powder sintered silica glasses for radiation sensing. Journal of the American Ceramic Society, 2019, 102, 222-238.	3.8	6
68	Optical Fiber Materials: feature introduction. Optical Materials Express, 2019, 9, 3565.	3.0	1
69	Recent Advances in Hybrid Optical Materials: Integrating Nanoparticles within a Glass Matrix. Advanced Optical Materials, 2019, 7, 1900702.	7.3	77
70	Multiplexed Optical Fiber Biochemical Sensing Using Cascaded C-Shaped Fabry–Perot Interferometers. IEEE Sensors Journal, 2019, 19, 10425-10431.	4.7	19
71	Light induced degradation in mixed-halide perovskites. Journal of Materials Chemistry C, 2019, 7, 9326-9334.	5.5	67
72	Nano-mechanical Characterization of SLM-Fabricated Ti6Al4V Alloy: Etching and Precision. Metallography, Microstructure, and Analysis, 2019, 8, 749-756.	1.0	4

#	Article	IF	CITATIONS
73	Surface Functionalization of Exposed Core Glass Optical Fiber for Metal Ion Sensing. Sensors, 2019, 19, 1829.	3.8	10
74	A fibre optic based approach and device for sensing beta radiation in liquids. Sensors and Actuators A: Physical, 2019, 296, 101-109.	4.1	4
75	Enhancement of extraordinary optical transmission and sensing performance through coupling between metal nanohole and nanoparticle arrays. Journal Physics D: Applied Physics, 2019, 52, 275201.	2.8	18
76	Can We Fabricate That Fibre?. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2019, , 1-13.	0.2	0
77	Optical fiber refractive index sensor with low detection limit and large dynamic range using a hybrid fiber interferometer. Journal of Lightwave Technology, 2019, , 1-1.	4.6	28
78	Short-Range Non-Bending Fully Distributed Water/Humidity Sensors. Journal of Lightwave Technology, 2019, 37, 2014-2022.	4.6	6
79	Stability of Grating-Based Optical Fiber Sensors at High Temperature. IEEE Sensors Journal, 2019, 19, 2978-2983.	4.7	26
80	High precision extrusion of glass tubes. International Journal of Applied Glass Science, 2019, 10, 172-180.	2.0	3
81	Large-area freestanding gold nanomembranes with nanoholes. Materials Horizons, 2019, 6, 1005-1012.	12.2	20
82	Reusable polymer optical fiber strain sensor with memory capability based on ABS crazing. Applied Optics, 2019, 58, 9870.	1.8	6
83	Quantum noise limited nanoparticle detection with exposed-core fiber. Optics Express, 2019, 27, 18601.	3.4	8
84	Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber. Optics Letters, 2019, 44, 626.	3.3	9
85	Transmission loss measurements of plastic scintillating optical fibres. Optical Materials Express, 2019, 9, 1.	3.0	16
86	Microchip and ultra-fast laser inscribed waveguide lasers in Yb ³⁺ germanate glass. Optical Materials Express, 2019, 9, 3557.	3.0	11
87	Towards new fiber optic sensors based on the vapor deposited conducting polymer PEDOT:Tos. Optical Materials Express, 2019, 9, 4517.	3.0	4
88	Microstructured optical fiber high-temperature sensors. , 2019, , .		0
89	Novel concepts for sensing, imaging and mode generation in fibers using high-index glass. , 2019, , .		0

90 Fabrication of imaging microstructured optical fibers. , 2019, , .

#	Article	IF	CITATIONS
91	Effects of pressurization and surface tension on drawing Ge-Sb-Se chalcogenide glass suspended-core fiber. Optical Materials Express, 2019, 9, 1933.	3.0	2
92	Modal interferometric refractive index sensing in microstructured exposed core fibres. Optics Express, 2019, 27, 36269.	3.4	1
93	Optical fibre turn-on sensor for the detection of mercury based on immobilized fluorophore. Measurement: Journal of the International Measurement Confederation, 2018, 121, 122-126.	5.0	20
94	Enhanced terahertz magnetic dipole response by subwavelength fiber. APL Photonics, 2018, 3, 051701.	5.7	6
95	Magnetically sensitive nanodiamond-doped tellurite glass fibers. Scientific Reports, 2018, 8, 1268.	3.3	44
96	High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber. Sensors and Actuators B: Chemical, 2018, 269, 103-109.	7.8	88
97	Highly birefringent elliptical core photonic crystal fiber for terahertz application. Optics Communications, 2018, 407, 92-96.	2.1	76
98	A spiropyran with enhanced fluorescence: A bright, photostable and red-emitting calcium sensor. Tetrahedron, 2018, 74, 1240-1244.	1.9	17
99	High Temperature Stability of Femtosecond Written Ablation Fiber Bragg Gratings in Microstructured Optical Fibers. , 2018, , .		0
100	Control of Molecular Recognition via Modulation of the Nanoenvironment. ACS Applied Materials & Interfaces, 2018, 10, 41866-41870.	8.0	4
101	Perspective: Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines. APL Photonics, 2018, 3, .	5.7	31
102	An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite. Journal of Materials Chemistry C, 2018, 6, 6988-6995.	5.5	54
103	Towards rewritable multilevel optical data storage in single nanocrystals. Optics Express, 2018, 26, 12266.	3.4	38
104	Light-controllable fiber interferometer utilizing photoexcitation dynamics in colloidal quantum dot. Optics Express, 2018, 26, 3903.	3.4	4
105	Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue. Optics Letters, 2018, 43, 1682.	3.3	27
106	A Rationally Designed, Spiropyran-Based Chemosensor for Magnesium. Chemosensors, 2018, 6, 17.	3.6	11
107	Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots. Sensors and Actuators B: Chemical, 2018, 273, 9-17.	7.8	39

108 Focussed electron beam induced deposition of platinum plasmonic antennae. , 2018, , .

1

#	Article	IF	CITATIONS
109	Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Optics Express, 2018, 26, 30347.	3.4	148
110	A six-strut suspended core fiber for cylindrical vector mode generation and propagation. Optics Express, 2018, 26, 32037.	3.4	3
111	Soft-glass imaging microstructured optical fibers. Optics Express, 2018, 26, 33604.	3.4	11
112	Imaging-aided Temperature Measurements with a Single Optical Fiber for in-vivo Sensing Applications. , 2018, , .		0
113	High Resolution Imaging Microstructured Optical Fibres. , 2018, , .		1
114	Rewritable multilevel optical data storage in BaFCl nanocrystals. , 2018, , .		0
115	Quasiperiodic nanohole array plasmonic sensors on optical fibers. , 2017, , .		0
116	High temperature sensing with single material silica optical fibers. , 2017, , .		0
117	Extrusion of fluid cylinders of arbitrary shape with surface tension and gravity. Journal of Fluid Mechanics, 2017, 810, 127-154.	3.4	5
118	Localized surface plasmon resonance sensing structure based on gold nanohole array on beveled fiber edge. Nanotechnology, 2017, 28, 435504.	2.6	33
119	Photoswitchable calcium sensor: â€~On'–â€~Off' sensing in cells or with microstructured optical fibers. Sensors and Actuators B: Chemical, 2017, 252, 965-972.	7.8	19
120	Enhanced electric and magnetic response of a THz sub-wavelength fiber excited by a localized source. , 2017, , .		1
121	Wavelength shifted third harmonic generation in an exposed-core microstructured optical fiber. , 2017, , .		1
122	Nanofilm-induced spectral tuning of third harmonic generation. Optics Letters, 2017, 42, 1812.	3.3	10
123	Plasmonic nanoparticle-functionalized exposed-core fiber—an optofluidic refractive index sensing platform. Optics Letters, 2017, 42, 4395.	3.3	22
124	Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials. Optical Materials Express, 2017, 7, 698.	3.0	40
125	Fabrication of low-loss, small-core exposed core microstructured optical fibers. Optical Materials Express, 2017, 7, 1496.	3.0	17
126	Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends. Sensors, 2017, 17, 12.	3.8	175

#	Article	IF	CITATIONS
127	Glass and Process Development for the Next Generation of Optical Fibers: A Review. Fibers, 2017, 5, 11.	4.0	50
128	Electro-holographic display using a ZBLAN glass as the image space. Optics Letters, 2017, 42, 1317.	3.3	2
129	Drawing tubular fibres: experiments versus mathematical modelling. Optical Materials Express, 2016, 6, 166.	3.0	21
130	Enhanced radiation dosimetry of fluoride phosphate glass optical fibres by terbium (III) doping. Optical Materials Express, 2016, 6, 3692.	3.0	23
131	Upconversion Nanocrystalâ€Đoped Glass: A New Paradigm for Photonic Materials. Advanced Optical Materials, 2016, 4, 1507-1517.	7.3	75
132	Surface Analysis and Treatment of Extruded Fluoride Phosphate Glass Preforms for Optical Fiber Fabrication. Journal of the American Ceramic Society, 2016, 99, 1874-1877.	3.8	8
133	Exploiting surface plasmon scattering on optical fibers. , 2016, , .		Ο
134	Reflective terahertz optics using 3D-printed metals. , 2016, , .		0
135	Gravitational extension of a fluid cylinder with internal structure. Journal of Fluid Mechanics, 2016, 790, 308-338.	3.4	10
136	Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions. ACS Applied Materials & Interfaces, 2016, 8, 12727-12732.	8.0	32
137	High temperature fiber sensor using the interference effect within a suspended core microstructured optical fiber. , 2016, , .		Ο
138	Interferometric high temperature sensor using suspended-core optical fibers. Optics Express, 2016, 24, 8967.	3.4	61
139	Quasiperiodic Nanohole Arrays on Optical Fibers as Plasmonic Sensors: Fabrication and Sensitivity Determination. ACS Sensors, 2016, 1, 1078-1083.	7.8	35
140	Third harmonic generation in exposed-core microstructured optical fibers. Optics Express, 2016, 24, 17860.	3.4	16
141	An optical fibre sensor for remotely detecting water traces in organic solvents. RSC Advances, 2016, 6, 82186-82190.	3.6	10
142	Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics. Optics Express, 2016, 24, 17384.	3.4	24
143	Effect of surface roughness on metal enhanced fluorescence in planar substrates and optical fibers. Optical Materials Express, 2016, 6, 2128.	3.0	20
144	Online remote monitoring of explosives by optical fibres. RSC Advances, 2016, 6, 103324-103327.	3.6	2

#	Article	IF	CITATIONS
145	Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications. Scientific Reports, 2016, 6, 21682.	3.3	10
146	Suspended Core Fibers for the Transmission of Cylindrical Vector Modes. Journal of Lightwave Technology, 2016, 34, 5620-5626.	4.6	4
147	Fiber optic approach for detecting corrosion. , 2016, , .		3
148	Temperature sensing up to 1300°C using suspended-core microstructured optical fibers. Optics Express, 2016, 24, 3714.	3.4	56
149	Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing. Optics Express, 2016, 24, 5911.	3.4	21
150	Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sensors and Actuators B: Chemical, 2016, 227, 117-127.	7.8	148
151	Asymptotic Modelling of a Six-Hole MOF. Journal of Lightwave Technology, 2016, 34, 5651-5656.	4.6	9
152	Hollow-Core Optical Fibers Made by Glass Billet Extrusion as Sensors for Raman Spectroscopy. , 2016, ,		0
153	Optical fiber sensor for the detection of mercury based on immobilized fluorophore. , 2016, , .		0
154	Nitric oxide sensitive optic fiber sensor based on immobilized ruthenium(II) complex. , 2016, , .		0
155	3D Photonics in the Mid-infrared: Parametric study of ultrafast laser inscribed waveguides for stellar interferometry. , 2016, , .		0
156	High Temperature Sensing with Suspended Core Fibers. , 2016, , .		0
157	Upconversion Nanocrystals Doped Glass: A New Paradigm for Integrated Optical Glass. , 2016, , .		1
158	Hollow core optical fibres made by glass billet extrusion as sensors for Raman spectroscopy. , 2016, , .		0
159	Elliptical pore regularisation of the inverse problem for microstructured optical fibreÂfabrication. Journal of Fluid Mechanics, 2015, 778, 5-38.	3.4	20
160	Microstructured optical fibre drawing with active channel pressurisation. Journal of Fluid Mechanics, 2015, 783, 137-165.	3.4	19
161	Taming the Light in Microstructured Optical Fibers for Sensing. International Journal of Applied Glass Science, 2015, 6, 229-239.	2.0	35
162	Demonstration of an Exposed-Core Fiber Platform for Two-Photon Rubidium Spectroscopy. Physical Review Applied, 2015, 4, .	3.8	8

#	Article	IF	CITATIONS
163	Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing. Sensors, 2015, 15, 25090-25102.	3.8	82
164	Atom–Photon Coupling from Nitrogen-vacancy Centres Embedded in Tellurite Microspheres. Scientific Reports, 2015, 5, 11486.	3.3	6
165	Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers. Optical Materials Express, 2015, 5, 73.	3.0	33
166	Infrared fibers. Advances in Optics and Photonics, 2015, 7, 379.	25.5	274
167	Computational Modeling of Hole Distortion in Extruded Microstructured Optical Fiber Glass Preforms. Journal of Lightwave Technology, 2015, 33, 424-431.	4.6	7
168	Atom-Photon Coupling from Nitrogen-vacancy Centers Embedded in Tellurite Microspheres. , 2015, , .		0
169	Low-Loss Tellurite Fibers With Embedded Nanodiamonds. , 2015, , .		0
170	Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water. Optical Materials Express, 2014, 4, 1213.	3.0	32
171	3D-printed extrusion dies: a versatile approach to optical material processing. Optical Materials Express, 2014, 4, 1494.	3.0	120
172	Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass. Optical Materials Express, 2014, 4, 2608.	3.0	27
173	Tellurite microspheres for nanoparticle sensing and novel light sources. Optics Express, 2014, 22, 11995.	3.4	29
174	Predicting the drawing conditions for Microstructured Optical Fiber fabrication. Optical Materials Express, 2014, 4, 29.	3.0	44
175	Novel polymer functionalization method for exposed-core optical fiber. Optical Materials Express, 2014, 4, 1515.	3.0	20
176	Computational Modeling of Die Swell of Extruded Glass Preforms at High Viscosity. Journal of the American Ceramic Society, 2014, 97, 1572-1581.	3.8	7
177	Functionalization of exposed core fibers with multiligand binding molecules for fluorescence based ion sensing. Proceedings of SPIE, 2014, , .	0.8	1
178	Extruded single ring hollow core optical fibers for Raman sensing. , 2014, , .		0
179	Drawing of micro-structured fibres: circular and non-circular tubes. Journal of Fluid Mechanics, 2014, 755, 176-203.	3.4	31
180	High stability supercontinuum generation in lead silicate SF57 photonic crystal fibers. Chinese Physics B. 2013, 22, 014215,	1.4	9

#	Article	IF	CITATIONS
181	Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating. Applied Physics B: Lasers and Optics, 2013, 111, 299-304.	2.2	9
182	Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass. Journal of Materials Chemistry C, 2013, 1, 6782.	5.5	13
183	Optical Fibres for Distributed Corrosion Sensing - Architecture and Characterisation. Key Engineering Materials, 2013, 558, 522-533.	0.4	4
184	Lead silicate microstructured optical fibres for electro-optical applications. Optics Express, 2013, 21, 31309.	3.4	9
185	Efficient 29Âμm fluorozirconate glass waveguide chip laser. Optics Letters, 2013, 38, 2588.	3.3	40
186	Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications. Optical Materials Express, 2013, 3, 1488.	3.0	68
187	Fabrication of extruded fluoroindate optical fibers. Optical Materials Express, 2013, 3, 318.	3.0	30
188	Femtosecond laser induced structural changes in fluorozirconate glass. Optical Materials Express, 2013, 3, 574.	3.0	33
189	Luminescent properties of fluoride phosphate glass for radiation dosimetry. Optical Materials Express, 2013, 3, 960.	3.0	9
190	Reduction of scattering loss in fluoroindate glass fibers. Optical Materials Express, 2013, 3, 1285.	3.0	26
191	Ultrafast laser inscribed 3D integrated photonics. , 2013, , .		1
192	Fabrication and properties of lead-germanate glasses for high nonlinearity fibre applications. , 2013, , .		1
193	Glasses for Infrared Fibre Applications. , 2013, , .		1
194	Upconversion Lasing for Index Sensing and Strong Amplitude Modulation of WGMs in Er-Yb Co-doped Tellurite Spheres. , 2013, , .		0
195	Optically stimulated luminescence in fluoride phosphate glass optical fibres for radiation dosimetry. , 2012, , .		1
196	Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers. Optics Express, 2012, 20, 27503.	3.4	56
197	Ternary tellurite glasses for the fabrication of nonlinear optical fibres. Optical Materials Express, 2012, 2, 140.	3.0	103
198	Surface tension and viscosity measurement of optical glasses using a scanning CO_2 laser. Optical Materials Express, 2012, 2, 1101.	3.0	36

#	Article	IF	CITATIONS
199	Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres. Optical Materials Express, 2012, 2, 62.	3.0	34
200	Analysis of glass flow during extrusion of optical fiber preforms. Optical Materials Express, 2012, 2, 304.	3.0	31
201	Extruded tellurite glass and fibers with low OH content for mid-infrared applications. Optical Materials Express, 2012, 2, 432.	3.0	69
202	Luminescence from bismuth-germanate glasses and its manipulation through oxidants. Optical Materials Express, 2012, 2, 1320.	3.0	39
203	Silica exposed-core microstructured optical fibers. Optical Materials Express, 2012, 2, 1538.	3.0	76
204	Lanthanide upconversion nanocrystals within microstructured optical fibres; a sensitive platform for biosensing and a new tool for nanocrystal characterisation. , 2012, , .		2
205	A microstructured optical fiber sensor for ion-sensing based on the photoinduced electron transfer effect. Proceedings of SPIE, 2012, , .	0.8	0
206	Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization. Nanoscale, 2012, 4, 7448.	5.6	18
207	Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics. International Journal of Applied Glass Science, 2012, 3, 332-348.	2.0	48
208	Glass and Photonics - an Overview. International Journal of Applied Glass Science, 2012, 3, 287-288.	2.0	1
209	21 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho^3+, Tm^3+:ZBLAN glass. Optics Letters, 2012, 37, 996.	3.3	47
210	Extruded Microstructured Fiber Lasers. IEEE Photonics Technology Letters, 2012, 24, 578-580.	2.5	20
211	Sensing Free Sulfur Dioxide in Wine. Sensors, 2012, 12, 10759-10773.	3.8	26
212	Direct-write depressed cladding waveguide Bragg-gratings in ZBLAN glass. , 2012, , .		0
213	Femtosecond laser direct-written microstructured waveguides in passive as well as in novel active glasses. , 2012, , .		1
214	Diamond in Glass, a New Platform for Quantum Photonics. , 2012, , .		0
215	Towards hybrid diamond optical devices. , 2011, , .		0
216	Energy level decay and excited state absorption processes in erbium-doped tellurite glass. Journal of Applied Physics, 2011, 110, .	2.5	63

#	Article	IF	CITATIONS
217	Extruded fluoride fiber for 2.3μm laser application. , 2011, , .		Ο
218	Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber. Langmuir, 2011, 27, 5680-5685.	3.5	69
219	Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber. Sensors, 2011, 11, 9560-9572.	3.8	23
220	Midinfrared optical rogue waves in soft glass photonic crystal fiber. Optics Express, 2011, 19, 17973.	3.4	29
221	Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber. Optics Express, 2011, 19, 21135.	3.4	36
222	Fifty percent internal slope efficiency femtosecond direct-written Tm^3+:ZBLAN waveguide laser. Optics Letters, 2011, 36, 1587.	3.3	124
223	A low-volume microstructured optical fiber hydrogen peroxide sensor. Proceedings of SPIE, 2011, , .	0.8	0
224	Optically Stimulated Luminescence in Fluoride–Phosphate Glass for Radiation Dosimetry. Journal of the American Ceramic Society, 2011, 94, 474-477.	3.8	13
225	Chemical Deposition of Silver for the Fabrication of Surface Plasmon Microstructured Optical Fibre Sensors. Plasmonics, 2011, 6, 133-136.	3.4	92
226	Diamond in Tellurite Glass: a New Medium for Quantum Information. Advanced Materials, 2011, 23, 2806-2810.	21.0	82
227	Hybrid Materials: Diamond in Tellurite Glass: a New Medium for Quantum Information (Adv. Mater.) Tj ETQq1 1 0	.784314 r 21.0	gBT /Overloc
228	Single photon emission from nanodiamond in tellurite glass. , 2011, , .		0
229	Sensing in suspended-core optical fibers. , 2011, , .		2
230	Fluoroindate fibres with reduced loss in the mid infrared spectral region: A study of the glass melting and fibre preparation conditions. , 2011, , .		0
231	Sensitive fluorescence detection with microstructured optical fibers. , 2011, , .		1
232	Low concentration fluorescence sensing in suspended-core fibers. , 2011, , .		2
233	A 40% slope efficiency 790nm pumped 1.9µm Tm ³⁺ : ZBLAN directly-written waveguide laser. , 2011, , .		0
234	Fabrication of depressed cladding waveguide Bragg-gratings in rare-earth doped heavy-metal fluoride glass. , 2011, , .		0

#	Article	IF	CITATIONS
235	Driving down the Detection Limit in Microstructured Fiber‑Based Chemical Dip Sensors. Sensors, 2011, 11, 2961-2971.	3.8	31
236	Fusion splicing soft-glass suspended core fibers to solid silica fibers for optical fiber sensing. , 2010, ,		2
237	Sensing with suspended-core optical fibers. Optical Fiber Technology, 2010, 16, 343-356.	2.7	165
238	Supercontinuum generation in dispersion-tailored bismuth microstructured optical fibre. , 2010, , .		0
239	Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber. Applied Physics Letters, 2010, 97, 061106.	3.3	46
240	Light confinement within nanoholes in nanostructured optical fibers. Optics Express, 2010, 18, 26018.	3.4	42
241	Experimental investigation of dispersion properties of THz porous fibers. , 2009, , .		4
242	Soft glass microstructured optical fibers: recent progress in fabrication and opportunities for novel optical devices. , 2009, , .		0
243	Small core optical waveguides are more nonlinear than expected: experimental confirmation. Optics Letters, 2009, 34, 3577.	3.3	69
244	Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores. Optics Express, 2009, 17, 2646.	3.4	138
245	THz porous fibers: design, fabrication and experimental characterization. Optics Express, 2009, 17, 14053.	3.4	222
246	Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: Erbium doped lanthanum-tellurite glass. Optics Express, 2009, 17, 15578.	3.4	46
247	Exposed-core microstructured optical fibers for real-time fluorescence sensing. Optics Express, 2009, 17, 18533.	3.4	88
248	A Fundamental Study Into the Surface Functionalization of Soft Glass Microstructured Optical Fibers via Silane Coupling Agents. Journal of Lightwave Technology, 2009, 27, 576-582.	4.6	14
249	Soft glass microstructured optical fibres: Recent progress in fabrication and opportunities for novel optical devices. , 2009, , .		0
250	Emerging nonlinear optical fibers: Fabrication and access to new properties. , 2009, , .		0
251	Cleaving of Extremely Porous Polymer Fibers. IEEE Photonics Journal, 2009, 1, 286-292.	2.0	34
252	Emerging Nonlinear Optical Fibers: Revised Fundamentals, Fabrication and Access to Extreme Nonlinearity. IEEE Journal of Quantum Electronics, 2009, 45, 1357-1364.	1.9	10

#	Article	IF	CITATIONS
253	Waveguide Writing and Characterization in Tellurite Glass. , 2009, , .		2
254	Comparison of surface functionalization processes for optical fibre biosensing applications. , 2009, , .		5
255	Exposed-core microstructured fibres for real-time fluorescence sensing. , 2009, , .		3
256	Emerging optical fibers: new fiber materials and structures. , 2009, , .		1
257	Advances in chemical and biological sensing using emerging soft glass optical fibers. , 2009, , .		0
258	Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission. Optics Letters, 2008, 33, 2861.	3.3	58
259	Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors. Optics Express, 2008, 16, 18514.	3.4	64
260	Spectroscopy of erbium in La ³⁺ -doped tellurite glass & fibres. , 2008, , .		1
261	New tellurite glasses for erbium fibre lasers. , 2008, , .		2
262	Fluoride glass microstructured optical fibre with large mode area and mid-infrared transmission. , 2008, , .		1
263	Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors. , 2008, , .		2
264	Highly efficient fluorescence sensing using microstructured optical fibres: general model and experiment. , 2008, , .		0
265	Progress in the Fabrication of the Next-Generation Soft Glass Microstructured Optical Fibers. AIP Conference Proceedings, 2008, , .	0.4	10
266	Record nonlinearity in optical fibre. Electronics Letters, 2008, 44, 1453.	1.0	20
267	Low loss, low dispersion T-ray transmission in microwires. , 2007, , .		0
268	Low loss, low dispersion T-ray transmission in Microwires. , 2007, , .		2
269	Reduced loss in extruded soft glass microstructured fibre. Electronics Letters, 2007, 43, 1343.	1.0	24

270 Reduced loss in extruded soft glass microstructured fibre. , 2007, , .

3

#	Article	IF	CITATIONS
271	Extrusion of complex preforms for microstructured optical fibers. Optics Express, 2007, 15, 15086.	3.4	195
272	Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers. Optics Express, 2007, 15, 17819.	3.4	85
273	Extruded high-NA microstructured polymer optical fibre. Optics Communications, 2007, 273, 133-137.	2.1	35
274	Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 738-749.	2.9	181
275	Concentration effects in erbium doped tellurite glass. , 2006, , .		1
276	Progress in the fabrication of soft glass microstructured optical fibres with complex and new structures. , 2006, , .		1
277	Efficient Four-Wave-Mixing at 1.55Â;m in a Short-Length Dispersion Shifted Lead Silicate Holey Fibre. , 2006, , .		1
278	PROGRESS IN MICROSTRUCTURED OPTICAL FIBERS. Annual Review of Materials Research, 2006, 36, 467-495.	9.3	159
279	Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 l̂¼m - 5 l̂¼m. , 2006, , .		12
280	High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation. Journal of Lightwave Technology, 2006, 24, 183-190.	4.6	120
281	Microwire fibers for low-loss THz transmission. , 2006, , .		10
282	Nonlinearity and dispersion control in small core lead silicate holey fibers by structured element stacking. , 2006, , .		2
283	Terahertz Waveguides and Materials. , 2006, , .		3
284	Extruded polymer preforms for high-NA polymer microstructured fiber. , 2006, , .		3
285	Heavy metal oxide glass holey fibers with high nonlinearity. , 2005, , .		4
286	Progress in soft glass microstructured fibres. , 2005, , .		1
287	Towards zero dispersion highly nonlinear lead silicate glass holey fibres at 1550 nm by structured-element-stacking. , 2005, , .		6
288	Laser writing of waveguides in photosensitive glasses. Optical Materials, 2004, 25, 109-115.	3.6	48

#	Article	IF	CITATIONS
289	Fabrication and optical properties of lead silicate glass holey fibers. Journal of Non-Crystalline Solids, 2004, 345-346, 293-296.	3.1	6
290	Bismuth glass holey fibers with high nonlinearity. Optics Express, 2004, 12, 5082.	3.4	234
291	Fundamentals and applications of silica and nonsilica holey fibers. , 2004, 5350, 35.		7
292	Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Optics Express, 2003, 11, 3568.	3.4	165
293	Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber. , 2003, , .		9
294	FLUORIDE PHOSPHATE AND PHOSPHATE GLASSES FOR PHOTONICS. Phosphorus Research Bulletin, 2002, 13, 11-20.	0.6	4
295	Energy transfer and upconversion in erbium–ytterbium-doped fluoride phosphate glasses. Applied Physics B: Lasers and Optics, 2002, 74, 233-236.	2.2	46
296	Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses. Optical Materials, 2002, 18, 419-430.	3.6	30
297	Effect of europium ions on X-ray-induced defect formation in phosphate containing glasses. Optical Materials, 2002, 19, 351-363.	3.6	28
298	Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass. Applied Physics B: Lasers and Optics, 2001, 72, 175-178.	2.2	44
299	Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses. Applied Physics B: Lasers and Optics, 2001, 72, 399-405.	2.2	188
300	A Neutron and X-ray Diffraction Study of the Structure of Nd Phosphate Glasses. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2001, 56, 237-243.	1.5	20
301	Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses. Optical Materials, 2000, 15, 7-25.	3.6	197
302	Crystallization behavior and spectroscopic properties of Ho3+-doped ZBYA-fluoride glass. Optical Materials, 2000, 14, 127-136.	3.6	29
303	Properties of Er3+-doped glasses for waveguide and fiber lasers. , 2000, , .		15
304	<title>Spectroscopic properties of rare-earth ions in heavy metal oxide and phosphate-containing glasses</title> . , 1999, 3622, 19.		29
305	Electron spin resonance spectra of Eu2+and Tb4+ions in glasses. Journal of Physics Condensed Matter, 1999, 11, 7627-7634.	1.8	45
306	Tb3+ f–d absorption as indicator of the effect of covalency on the Judd–Ofelt Ω2 parameter in glasses. Journal of Non-Crystalline Solids, 1999, 248, 247-252.	3.1	74

#	Article	IF	CITATIONS
307	RARE EARTH IONS AS INDICATORS FOR RADIATION-INDUCED DEFECT CENTER FORMATION IN PHOSPHATE CONTAINING GLASSES. Phosphorus Research Bulletin, 1999, 10, 552-557.	0.6	4
308	Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses. Journal of Non-Crystalline Solids, 1998, 240, 66-78.	3.1	197
309	New Yb-doped fluoride phosphate laser glass-structural investigations using probe ions. Journal of Luminescence, 1997, 72-74, 449-450.	3.1	4
310	UV radiation effects in fluoride phosphate glasses. Journal of Non-Crystalline Solids, 1996, 196, 113-117.	3.1	22
311	Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses. Journal of Non-Crystalline Solids, 1996, 208, 205-216.	3.1	149
312	Relationships between glass structure and spectroscopic properties of Eu ³⁺ and Tb ³⁺ doped glasses. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 1621-1624.	0.9	9
313	Spectroscopic properties of Nd3+ ions in phoshate glasses. Journal of Non-Crystalline Solids, 1995, 183, 191-200.	3.1	74
314	Spectroscopic and laser properties of Ce3+î—,Cr3+î—,Nd3+ co-doped fluoride phosphate and phosphate glasses. Journal of Non-Crystalline Solids, 1994, 171, 94-104.	3.1	77
315	Dehydration of phosphate glasses. Journal of Non-Crystalline Solids, 1993, 163, 74-80.	3.1	96
316	High Nonlinearity Holey Fibers: Design, Fabrication and Applications. , 0, , .		2
317	Non-Oxide Optical Materials: Introduction to the Special Issue. Optical Materials Express, 0, , .	3.0	Ο