Takhee Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/473056/publications.pdf

Version: 2024-02-01

363 papers 16,518 citations

14655 66 h-index 20358 116 g-index

384 all docs

384 docs citations

times ranked

384

18226 citing authors

#	Article	IF	Citations
1	Molecular-Scale Electronics: From Concept to Function. Chemical Reviews, 2016, 116, 4318-4440.	47.7	1,014
2	Observation of molecular orbital gating. Nature, 2009, 462, 1039-1043.	27.8	712
3	Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Physical Review B, 2003, 68, .	3.2	566
4	Organic Resistive Memory Devices: Performance Enhancement, Integration, and Advanced Architectures. Advanced Functional Materials, 2011, 21, 2806-2829.	14.9	432
5	Single Molecule Electronic Devices. Advanced Materials, 2011, 23, 1583-1608.	21.0	426
6	Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer. Nano Letters, 2004, 4, 643-646.	9.1	364
7	The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 2012, 23, 112001.	2.6	329
8	Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. Journal of Materials Chemistry, 2009, 19, 9045.	6.7	282
9	Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 2010, 21, 175201.	2.6	259
10	Tunable Electronic Transport Characteristics of Surface-Architecture-Controlled ZnO Nanowire Field Effect Transistors. Nano Letters, 2008, 8, 950-956.	9.1	235
11	Threeâ€Dimensional Integration of Organic Resistive Memory Devices. Advanced Materials, 2010, 22, 5048-5052.	21.0	213
12	Mechanically Controllable Break Junctions for Molecular Electronics. Advanced Materials, 2013, 25, 4845-4867.	21.0	192
13	Electric Stress-Induced Threshold Voltage Instability of Multilayer MoS ₂ Field Effect Transistors. ACS Nano, 2013, 7, 7751-7758.	14.6	190
14	Recent Progress in Inkjetâ€Printed Thinâ€Film Transistors. Advanced Science, 2019, 6, 1801445.	11.2	187
15	Electrical and Optical Characterization of MoS ₂ with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. ACS Nano, 2015, 9, 8044-8053.	14.6	185
16	Flexible Multilevel Resistive Memory with Controlled Charge Trap B- and N-Doped Carbon Nanotubes. Nano Letters, 2012, 12, 2217-2221.	9.1	177
17	Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Science Robotics, 2018, 3, .	17.6	176
18	Rewritable Switching of One Diode–One Resistor Nonvolatile Organic Memory Devices. Advanced Materials, 2010, 22, 1228-1232.	21.0	174

#	Article	IF	CITATIONS
19	A New Approach for Molecular Electronic Junctions with a Multilayer Graphene Electrode. Advanced Materials, 2011, 23, 755-760.	21.0	171
20	High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nature Communications, 2020, 11, 5948.	12.8	169
21	Flexible molecular-scale electronic devices. Nature Nanotechnology, 2012, 7, 438-442.	31.5	165
22	Stable Switching Characteristics of Organic Nonvolatile Memory on a Bent Flexible Substrate. Advanced Materials, 2010, 22, 3071-3075.	21.0	164
23	Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology, 2013, 24, 095202.	2.6	160
24	All-Inkjet-Printed Organic Thin-Film Transistor Inverter on Flexible Plastic Substrate. IEEE Electron Device Letters, 2011, 32, 1134-1136.	3.9	156
25	Direct Observation of Ag Filamentary Paths in Organic Resistive Memory Devices. Advanced Functional Materials, 2011, 21, 3976-3981.	14.9	149
26	Electron tunnelling in self-assembled monolayers. Reports on Progress in Physics, 2005, 68, 523-544.	20.1	136
27	High-Yield Functional Molecular Electronic Devices. ACS Nano, 2017, 11, 6511-6548.	14.6	136
28	Flexible Organic Memory Devices with Multilayer Graphene Electrodes. ACS Nano, 2011, 5, 5995-6000.	14.6	131
29	Biogenic formation of photoactive arsenic-sulfide nanotubes by <i>Shewanella</i> sp. strain HN-41. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20410-20415.	7.1	127
30	Enhanced Charge Injection in Pentacene Fieldâ€Effect Transistors with Graphene Electrodes. Advanced Materials, 2011, 23, 100-105.	21.0	124
31	Comparison of Electronic Transport Characterization Methods for Alkanethiol Self-Assembled Monolayersâ€. Journal of Physical Chemistry B, 2004, 108, 8742-8750.	2.6	122
32	Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes. Nanotechnology, 2012, 23, 344013.	2.6	119
33	Photoelectron Spectroscopic Imaging and Device Applications of Large-Area Patternable Single-Layer MoS ₂ Synthesized by Chemical Vapor Deposition. ACS Nano, 2014, 8, 4961-4968.	14.6	117
34	Conductance and Vibrational States of Single-Molecule Junctions Controlled by Mechanical Stretching and Material Variation. Physical Review Letters, 2011, 106, 196804.	7.8	116
35	Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Organic Electronics, 2010, 11, 1864-1869.	2.6	113
36	Statistical analysis of electronic properties of alkanethiols in metal–molecule–metal junctions. Nanotechnology, 2007, 18, 315204.	2.6	111

#	Article	IF	Citations
37	Elastic and Inelastic Electron Tunneling in Alkane Self-Assembled Monolayers. Journal of Physical Chemistry B, 2004, 108, 18398-18407.	2.6	108
38	Organic resistive nonvolatile memory materials. MRS Bulletin, 2012, 37, 144-149.	3.5	104
39	Three-Terminal Single-Molecule Junctions Formed by Mechanically Controllable Break Junctions with Side Gating. Nano Letters, 2013, 13, 2809-2813.	9.1	103
40	Enhancement of photodetection characteristics of MoS ₂ field effect transistors using surface treatment with copper phthalocyanine. Nanoscale, 2015, 7, 18780-18788.	5. 6	101
41	One Transistor–One Resistor Devices for Polymer Nonâ€Volatile Memory Applications. Advanced Materials, 2009, 21, 2497-2500.	21.0	100
42	Irradiation Effects of High-Energy Proton Beams on MoS ₂ Field Effect Transistors. ACS Nano, 2014, 8, 2774-2781.	14.6	100
43	Highâ€Performance Solutionâ€Processed Organoâ€Metal Halide Perovskite Unipolar Resistive Memory Devices in a Crossâ€Bar Array Structure. Advanced Materials, 2019, 31, e1804841.	21.0	100
44	Morphology- and Orientation-Controlled Gallium Arsenide Nanowires on Silicon Substrates. Nano Letters, 2007, 7, 39-44.	9.1	99
45	Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes. Applied Physics Letters, 2009, 94, .	3.3	97
46	Inkjet-printed stretchable silver electrode on wave structured elastomeric substrate. Applied Physics Letters, $2011, 98, .$	3.3	97
47	Novel Nonvolatile Memory with Multibit Storage Based on a ZnO Nanowire Transistor. Nano Letters, 2010, 10, 4316-4320.	9.1	96
48	Intermolecular Chain-to-Chain Tunneling in Metalâ^'Alkanethiolâ^'Metal Junctions. Journal of the American Chemical Society, 2007, 129, 3806-3807.	13.7	94
49	Unipolar nonvolatile memory devices with composites of poly(9-vinylcarbazole) and titanium dioxide nanoparticles. Organic Electronics, 2009, 10, 473-477.	2.6	94
50	Passivation effects on ZnO nanowire field effect transistors under oxygen, ambient, and vacuum environments. Applied Physics Letters, 2008, 92, 263109.	3.3	93
51	Structural and Electrical Characterization of a Block Copolymerâ€Based Unipolar Nonvolatile Memory Device. Advanced Materials, 2012, 24, 385-390.	21.0	93
52	Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Applied Physics Letters, 2010, 97, .	3.3	92
53	Piezoelectric Effect on the Electronic Transport Characteristics of ZnO Nanowire Fieldâ€Effect Transistors on Bent Flexible Substrates. Advanced Materials, 2008, 20, 4557-4562.	21.0	88
54	Surface relief gratings on poly(3-hexylthiophene) and fullerene blends for efficient organic solar cells. Applied Physics Letters, 2007, 91, .	3.3	85

#	Article	IF	CITATIONS
55	Hierarchical Porous Film with Layer-by-Layer Assembly of 2D Copper Nanosheets for Ultimate Electromagnetic Interference Shielding. ACS Nano, 2021, 15, 829-839.	14.6	85
56	Grapheneâ€Conducting Polymer Hybrid Transparent Electrodes for Efficient Organic Optoelectronic Devices. Advanced Functional Materials, 2014, 24, 1847-1856.	14.9	76
57	Enhancement of Field Emission Transport by Molecular Tilt Configuration in Metalâ^'Moleculeâ^'Metal Junctions. Journal of the American Chemical Society, 2009, 131, 5980-5985.	13.7	75
58	Mechanism of Electron Conduction in Self-Assembled Alkanethiol Monolayer Devices. Annals of the New York Academy of Sciences, 2003, 1006, 21-35.	3.8	73
59	Organic nonvolatile memory devices with charge trapping multilayer graphene film. Nanotechnology, 2012, 23, 105202.	2.6	72
60	Flexible Molecularâ€Scale Electronic Devices Composed of Diarylethene Photoswitching Molecules. Advanced Materials, 2014, 26, 3968-3973.	21.0	72
61	P-type CuO and Cu2O transistors derived from a sol–gel copper (II) acetate monohydrate precursor. Thin Solid Films, 2016, 600, 157-161.	1.8	72
62	Transparent Large-Area MoS ₂ Phototransistors with Inkjet-Printed Components on Flexible Platforms. ACS Nano, 2017, 11, 10273-10280.	14.6	72
63	Recent Advances in Interface Engineering of Transition-Metal Dichalcogenides with Organic Molecules and Polymers. ACS Nano, 2019, 13, 9713-9734.	14.6	72
64	Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells. Electrochimica Acta, 2008, 53, 2560-2566.	5.2	70
65	Enhanced electron mobility in epitaxial (Ba,La)SnO3 films on BaSnO3(001) substrates. Applied Physics Letters, 2016, 108, .	3.3	69
66	Redoxâ€Induced Asymmetric Electrical Characteristics of Ferroceneâ€Alkanethiolate Molecular Devices on Rigid and Flexible Substrates. Advanced Functional Materials, 2014, 24, 2472-2480.	14.9	68
67	Influence of metal-molecule contacts on decay coefficients and specific contact resistances in molecular junctions. Physical Review B, 2007, 76, .	3.2	67
68	Reversible switching characteristics of polyfluorene-derivative single layer film for nonvolatile memory devices. Applied Physics Letters, 2008, 92, .	3.3	66
69	Electrical Properties of Synthesized Large-Area MoS2 Field-Effect Transistors Fabricated with Inkjet-Printed Contacts. ACS Nano, 2016, 10, 2819-2826.	14.6	64
70	Coherent Tunneling Transport in Molecular Junctions. Journal of Physical Chemistry C, 2010, 114, 20431-20435.	3.1	63
71	Tuning of the Electronic Characteristics of ZnO Nanowire Field Effect Transistors by Proton Irradiation. ACS Nano, 2010, 4, 811-818.	14.6	62
72	A robust, gravure-printed, silver nanowire/metal oxide hybrid electrode for high-throughput patterned transparent conductors. Journal of Materials Chemistry C, 2016, 4, 3248-3255.	5.5	60

#	Article	IF	Citations
73	Enhanced Charge Injection Properties of Organic Fieldâ€Effect Transistor by Molecular Implantation Doping. Advanced Materials, 2019, 31, e1806697.	21.0	60
74	Solutionâ€Processed Reduced Graphene Oxide Films as Electronic Contacts for Molecular Monolayer Junctions. Angewandte Chemie - International Edition, 2012, 51, 108-112.	13.8	59
75	Inkjet-printed stretchable single-walled carbon nanotube electrodes with excellent mechanical properties. Applied Physics Letters, 2014, 104, .	3.3	58
76	Contactâ€Engineered Electrical Properties of MoS ₂ Fieldâ€Effect Transistors via Selectively Deposited Thiolâ€Molecules. Advanced Materials, 2018, 30, e1705540.	21.0	56
77	Transient reverse current phenomenon in a p-n heterojunction comprised of poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) and ZnO nanowall. Applied Physics Letters, 2008, 93, .	3.3	55
78	Effects of Metalâ^'Molecule Contact and Molecular Structure on Molecular Electronic Conduction in Nonresonant Tunneling Regime: Alkyl versus Conjugated Molecules. Journal of Physical Chemistry C, 2008, 112, 13010-13016.	3.1	55
79	Radiation hardness of the electrical properties of carbon nanotube network field effect transistors under high-energy proton irradiation. Nanotechnology, 2006, 17, 5675-5680.	2.6	54
80	Flexible Highâ∈Performance Allâ∈Inkjetâ∈Printed Inverters: Organoâ∈Compatible and Stable Interface Engineering. Advanced Materials, 2013, 25, 4773-4777.	21.0	54
81	Trap-mediated electronic transport properties of gate-tunable pentacene/MoS2 p-n heterojunction diodes. Scientific Reports, 2016, 6, 36775.	3.3	54
82	Hydrogen-Induced Morphotropic Phase Transformation of Single-Crystalline Vanadium Dioxide Nanobeams. Nano Letters, 2013, 13, 1822-1828.	9.1	53
83	Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process. Applied Physics Letters, 2006, 88, 103505.	3.3	52
84	Realization of highly reproducible ZnO nanowire field effect transistors with n-channel depletion and enhancement modes. Applied Physics Letters, 2007, 90, 243103.	3.3	52
85	Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps. Nanotechnology, 2011, 22, 205204.	2.6	52
86	Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities. Nanotechnology, 2012, 23, 075702.	2.6	52
87	Low frequency noise characterizations of ZnO nanowire field effect transistors. Journal of Applied Physics, 2007, 101, 044313.	2.5	51
88	Enhancement of the light output of GaN-based light-emitting diodes with surface-patterned ITO electrodes by maskless wet-etching. Solid-State Electronics, 2007, 51, 793-796.	1.4	51
89	Electrical transport characteristics through molecular layers. Journal of Materials Chemistry, 2011, 21, 18117.	6.7	48
90	Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices. Applied Physics Letters, 2012, 101, .	3.3	48

#	Article	IF	Citations
91	Electrical properties of ZnO nanowire field effect transistors by surface passivation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 378-382.	4.7	47
92	Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure. Nanotechnology, 2009, 20, 025201.	2.6	47
93	The effect of excimer laser annealing on ZnO nanowires and their field effect transistors. Nanotechnology, 2009, 20, 095203.	2.6	47
94	Investigation of the Transition Voltage Spectra of Molecular Junctions Considering Frontier Molecular Orbitals and the Asymmetric Coupling Effect. Journal of Physical Chemistry C, 2011, 115, 17979-17985.	3.1	47
95	Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films. Applied Physics Letters, 2009, 94, .	3.3	46
96	Diameter-Engineered SnO ₂ Nanowires over Contact-Printed Gold Nanodots Using Size-Controlled Carbon Nanopost Array Stamps. ACS Nano, 2010, 4, 1829-1836.	14.6	46
97	Graphene/Pentacene Barristor with Ion-Gel Gate Dielectric: Flexible Ambipolar Transistor with High Mobility and On/Off Ratio. ACS Nano, 2015, 9, 7515-7522.	14.6	46
98	Electrical Properties of Surface-Tailored ZnO Nanowire Field-Effect Transistors. IEEE Transactions on Electron Devices, 2008, 55, 3020-3029.	3.0	44
99	Layer-by-Layer Structural Identification of 2D Ruddlesden–Popper Hybrid Lead Iodide Perovskites by Solid-State NMR Spectroscopy. Chemistry of Materials, 2021, 33, 370-377.	6.7	44
100	Electronic transport in self-assembled alkanethiol monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 117-125.	2.7	43
101	Single-Atom Switches and Single-Atom Gaps Using Stretched Metal Nanowires. ACS Nano, 2016, 10, 9695-9702.	14.6	43
102	Two-Dimensional Thickness-Dependent Avalanche Breakdown Phenomena in MoS ₂ Field-Effect Transistors under High Electric Fields. ACS Nano, 2018, 12, 7109-7116.	14.6	43
103	Intrinsic Optoelectronic Characteristics of MoS ₂ Phototransistors <i>via</i> a Fully Transparent van der Waals Heterostructure. ACS Nano, 2019, 13, 9638-9646.	14.6	43
104	Title is missing!. Journal of Nanoparticle Research, 2000, 2, 345-362.	1.9	42
105	Electrical characterization of organic resistive memory with interfacial oxide layers formed by O2 plasma treatment. Applied Physics Letters, 2010, 97, .	3.3	42
106	Noise Characteristics of Charge Tunneling via Localized States in Metalâ^'Moleculeâ^'Metal Junctions. ACS Nano, 2010, 4, 4426-4430.	14.6	42
107	Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS ₂ field-effect transistors. Nanotechnology, 2014, 25, 155201.	2.6	42
108	Electrical Characterization of Unipolar Organic Resistive Memory Devices Scaled Down by a Direct Metal†ransfer Method. Advanced Materials, 2011, 23, 2104-2107.	21.0	41

#	Article	IF	Citations
109	Nonvolatile Memory Functionality of ZnO Nanowire Transistors Controlled by Mobile Protons. ACS Nano, 2011, 5, 558-564.	14.6	40
110	Reversible Switching Phenomenon in Diarylethene Molecular Devices with Reduced Graphene Oxide Electrodes on Flexible Substrates. Advanced Functional Materials, 2015, 25, 5918-5923.	14.9	39
111	Vibrational spectra of metal-molecule-metal junctions in electromigrated nanogap electrodes by inelastic electron tunneling. Applied Physics Letters, 2009, 94, 103110.	3.3	38
112	InGaN-Based p–i–n Solar Cells with Graphene Electrodes. Applied Physics Express, 2011, 4, 052302.	2.4	36
113	Graphene Films Show Stable Cell Attachment and Biocompatibility with Electrogenic Primary Cardiac Cells. Molecules and Cells, 2013, 36, 577-582.	2.6	36
114	Fabrication, structural and electrical characterization of VO2 nanowires. Materials Research Bulletin, 2008, 43, 1649-1656.	5.2	34
115	Nanoscale Resistive Switching of a Copper–Carbon-Mixed Layer for Nonvolatile Memory Applications. IEEE Electron Device Letters, 2009, 30, 302-304.	3.9	34
116	One-Step Interface Engineering for All-Inkjet-Printed, All-Organic Components in Transparent, Flexible Transistors and Inverters: Polymer Binding. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8819-8829.	8.0	34
117	Investigation of Time–Dependent Resistive Switching Behaviors of Unipolar Nonvolatile Organic Memory Devices. Advanced Functional Materials, 2018, 28, 1801162.	14.9	34
118	Ultrasensitive Photodetection in MoS ₂ Avalanche Phototransistors. Advanced Science, 2021, 8, e2102437.	11.2	34
119	Resistive Switching Characteristics of Solution-Processed Transparent $TiO[sub\ x]$ for Nonvolatile Memory Application. Journal of the Electrochemical Society, 2010, 157, H1042.	2.9	33
120	Nanotechnology-based flexible electronics. Nanotechnology, 2012, 23, 340201-340201.	2.6	33
121	A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs. Nanotechnology, 2012, 23, 255201.	2.6	33
122	Origin of discrete current fluctuations in a single molecule junction. Nanoscale, 2014, 6, 13396-13401.	5.6	33
123	Structural and electrical characterization of intrinsic n-type In2O3 nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 308-311.	4.7	32
124	Logic inverters composed of controlled depletion-mode and enhancement-mode ZnO nanowire transistors. Applied Physics Letters, 2009, 94, 173118.	3.3	32
125	Effect of PEDOT:PSS–molecule interface on the charge transport characteristics of the large-area molecular electronic junctions. Organic Electronics, 2012, 13, 771-777.	2.6	32
126	Highly Reliable Superhydrophobic Protection for Organic Field-Effect Transistors by Fluoroalkylsilane-Coated TiO ₂ Nanoparticles. ACS Nano, 2018, 12, 11062-11069.	14.6	32

#	Article	IF	CITATIONS
127	Effect of gate bias sweep rate on the electronic properties of ZnO nanowire field-effect transistors under different environments. Applied Physics Letters, 2008, 92, .	3.3	31
128	Controlled assembly of In_2O_3 nanowires on electronic circuits using scanning optical tweezers. Optics Express, 2009, 17, 17491.	3.4	31
129	Random telegraph signals in n-type ZnO nanowire field effect transistors at low temperature. Applied Physics Letters, 2007, 91, .	3.3	30
130	Hybrid Complementary Logic Circuits of Oneâ€Dimensional Nanomaterials with Adjustment of Operation Voltage. Advanced Materials, 2009, 21, 2156-2160.	21.0	30
131	Contact Resistance of Inkjet-Printed Silver Source–Drain Electrodes in Bottom-Contact OTFTs. Journal of Display Technology, 2012, 8, 48-53.	1.2	30
132	Highly Stable Contact Doping in Organic Field Effect Transistors by Dopantâ€Blockade Method. Advanced Functional Materials, 2020, 30, 2000058.	14.9	30
133	Improved photoswitching response times of MoS2 field-effect transistors by stacking <i>p</i> -type copper phthalocyanine layer. Applied Physics Letters, 2016, 109, .	3.3	29
134	Channel-length and gate-bias dependence of contact resistance and mobility for In2O3 nanowire field effect transistors. Journal of Applied Physics, 2007, 102, 084508.	2.5	28
135	Effects of surface roughness on the electrical characteristics of ZnO nanowire field effect transistors. Applied Surface Science, 2008, 254, 7559-7564.	6.1	28
136	Electrical conduction through self-assembled monolayers in molecular junctions: Au/molecules/Au versus Au/molecule/PEDOT:PSS/Au. Thin Solid Films, 2009, 518, 824-828.	1.8	28
137	Shaping the Atomicâ€Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices. Small, 2018, 14, e1703815.	10.0	28
138	Effects of channel-length scaling on In2O3 nanowire field effect transistors studied by conducting atomic force microscopy. Applied Physics Letters, 2007, 90, 173106.	3.3	27
139	Electrical properties of ZnO nanowire field effect transistors with varying high-kâ€^Al2O3 dielectric thickness. Journal of Applied Physics, 2010, 107, .	2.5	27
140	A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks. Nanotechnology, 2011, 22, 045706.	2.6	27
141	Twistable nonvolatile organic resistive memory devices. Organic Electronics, 2013, 14, 2087-2092.	2.6	27
142	Molecular Orbital Gating Surface-Enhanced Raman Scattering. ACS Nano, 2018, 12, 11229-11235.	14.6	27
143	Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nature Communications, 2022, 13 , .	12.8	27
144	Resistive switching characteristics of solution-processed TiOx for next-generation non-volatile memory application; transparency, flexibility, and nano-scale memory feasibility. Microelectronic Engineering, 2011, 88, 1143-1147.	2.4	26

#	Article	IF	Citations
145	Large scale MoS ₂ nanosheet logic circuits integrated by photolithography on glass. 2D Materials, 2016, 3, 044001.	4.4	26
146	Fabrication of a MoS ₂ /Graphene Nanoribbon Heterojunction Network for Improved Thermoelectric Properties. Advanced Materials Interfaces, 2019, 6, 1901333.	3.7	26
147	Atomic switches of metallic point contacts by plasmonic heating. Light: Science and Applications, 2019, 8, 34.	16.6	26
148	All-Inkjet-Printed Organic Thin-Film Transistors with Silver Gate, Source/Drain Electrodes. Japanese Journal of Applied Physics, 2011, 50, 03CB05.	1.5	26
149	An ohmic nanocontact to GaAs. Applied Physics Letters, 1999, 74, 2869-2871.	3.3	25
150	Electronic Transport in Molecular Self-Assembled Monolayer Devices. Proceedings of the IEEE, 2005, 93, 1815-1824.	21.3	25
151	High-performance organic charge trap flash memory devices based on ink-jet printed 6,13-bis(triisopropylsilylethynyl) pentacene transistors. Applied Physics Letters, 2010, 96, 213107.	3.3	25
152	Electronic properties associated with conformational changes in azobenzene-derivative molecular junctions. Organic Electronics, 2011, 12, 2144-2150.	2.6	25
153	Highâ€Fidelity Formation of a Molecularâ€Junction Device Using a Thicknessâ€Controlled Bilayer Architecture. Small, 2008, 4, 1399-1405.	10.0	24
154	Transient drain current characteristics of ZnO nanowire field effect transistors. Applied Physics Letters, 2009, 95, 123101.	3.3	24
155	Enhanced characteristics of pentacene field-effect transistors with graphene electrodes and substrate treatments. Applied Physics Letters, 2011, 99, 083306.	3.3	24
156	Near-ultraviolet light-emitting diodes with transparent conducting layer of gold-doped multi-layer graphene. Journal of Applied Physics, 2013, 113 , .	2.5	24
157	1/ <i>f</i> Noise Scaling Analysis in Unipolar-Type Organic Nanocomposite Resistive Memory. ACS Nano, 2015, 9, 7697-7703.	14.6	24
158	The influence of surface chemical dynamics on electrical and optical properties of ZnO nanowire field effect transistors. Nanotechnology, 2009, 20, 505202.	2.6	23
159	High-Performance Inkjet-Printed Four-Terminal Microelectromechanical Relays and Inverters. Nano Letters, 2015, 15, 3261-3266.	9.1	23
160	Unidirectional Real-Time Photoswitching of Diarylethene Molecular Monolayer Junctions with Multilayer Graphene Electrodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11645-11653.	8.0	23
161	Effect of metal ions on the switching performance of polyfluorene-based organic non-volatile memory devices. Organic Electronics, 2010, 11, 109-114.	2.6	22
162	Electrical and structural properties of antimony-doped p-type ZnO nanorods with self-corrugated surfaces. Nanotechnology, 2012, 23, 495712.	2.6	22

#	Article	IF	CITATIONS
163	Characterization of PI:PCBM organic nonvolatile resistive memory devices under thermal stress. Organic Electronics, 2016, 33, 48-54.	2.6	22
164	Removal of Cetyltrimethylammonium Bromide to Enhance the Biocompatibility of Au Nanorods Synthesized by a Modified Seed Mediated Growth Process. Journal of Nanoscience and Nanotechnology, 2008, 8, 4670-4674.	0.9	21
165	A direct metal transfer method for cross-bar type polymer non-volatile memory applications. Nanotechnology, 2008, 19, 405201.	2.6	21
166	Tuning of operation mode of ZnO nanowire field effect transistors by solvent-driven surface treatment. Nanotechnology, 2009, 20, 475702.	2.6	21
167	Templated assembly of metal nanoparticles in nanoimprinted patterns for metal nanowire fabrication. Nanotechnology, 2009, 20, 355302.	2.6	21
168	Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices. Scientific Reports, 2016, 6, 33967.	3.3	21
169	A statistical method for determining intrinsic electronic transport properties of self-assembled alkanethiol monolayer devices. Applied Physics Letters, 2007, 91, 253116.	3.3	20
170	Intrinsic charge transport of conjugated organic molecules in electromigrated nanogap junctions. Journal of Applied Physics, 2011, 109, 102419.	2.5	20
171	Largeâ€Area Fabrication of Periodic Subâ€15 nmâ€Width Singleâ€Layer Graphene Nanorings. Advanced Materials, 2013, 25, 199-204.	21.0	20
172	The application of orthogonal photolithography to micro-scale organic field effect transistors and complementary inverters on flexible substrate. Applied Physics Letters, 2014, 104, 053301.	3.3	20
173	Catalyst-free bottom-up growth of graphene nanofeatures along with molecular templates on dielectric substrates. Nanoscale, 2016, 8, 17022-17029.	5.6	20
174	An In-Depth Study of Redox-Induced Conformational Changes in Charge Transport Characteristics of a Ferrocene-Alkanethiolate Molecular Electronic Junction: Temperature-Dependent Transition Voltage Spectroscopy Analysis. Journal of Physical Chemistry C, 2016, 120, 3564-3572.	3.1	20
175	Molecular Dopantâ€Dependent Charge Transport in Surfaceâ€Chargeâ€Transferâ€Doped Tungsten Diselenide Field Effect Transistors. Advanced Materials, 2021, 33, e2101598.	21.0	20
176	Inkjet-Printed Silver Gate Electrode and Organic Dielectric Materials for Bottom-Gate Pentacene Thin-Film Transistors. Journal of the Korean Physical Society, 2009, 54, 518-522.	0.7	20
177	Solution-Processed Complementary Resistive Switching Arrays for Associative Memory. IEEE Transactions on Electron Devices, 2017, 64, 4310-4316.	3.0	19
178	Transparent <i>p</i> -Cul/ <i>n</i> -BaSnO _{3â°'<i>Î'</i>} heterojunctions with a high rectification ratio. Journal of Physics Condensed Matter, 2017, 29, 384004.	1.8	19
179	Tunable rectification in a molecular heterojunction with two-dimensional semiconductors. Nature Communications, 2020, $11,1412$.	12.8	19
180	Highly Integrated, Wearable Carbonâ€Nanotubeâ€Yarnâ€Based Thermoelectric Generators Achieved by Selective Inkjetâ€Printed Chemical Doping. Advanced Energy Materials, 2022, 12, .	19.5	19

#	Article	IF	CITATIONS
181	Ohmic nanocontacts to GaAs using undoped and p-doped layers of low-temperature-grown GaAs. Applied Physics Letters, 2000, 76, 212-214.	3.3	18
182	Investigation of inelastic electron tunneling spectra of metal-molecule-metal junctions fabricated using direct metal transfer method. Applied Physics Letters, 2015, 106, .	3.3	18
183	Crystal Size Effect on Carrier Transport of Microscale Perovskite Junctions via Soft Contact. Nano Letters, 2020, 20, 8640-8646.	9.1	18
184	Metrology for the Electrical Characterization of Semiconductor Nanowires. IEEE Transactions on Electron Devices, 2008, 55, 3086-3095.	3.0	17
185	Structural and photoluminescence characterization of ZnO nanowalls grown by metal organic chemical vapor deposition. Thin Solid Films, 2009, 518, 865-869.	1.8	17
186	Printing of Sub-100-nm Metal Nanodot Arrays by Carbon Nanopost Stamps. ACS Nano, 2011, 5, 5543-5551.	14.6	17
187	Proton Irradiation Effects on Resistive Random Access Memory With $ZrO_{m x}\$ MfO $_{m x}\$ Stacks. IEEE Transactions on Nuclear Science, 2011, 58, 3317-3320.	2.0	17
188	Flexible resistive random access memory using solution-processed TiOx with Al top electrode on Ag layer-inserted indium-zinc-tin-oxide-coated polyethersulfone substrate. Applied Physics Letters, 2011, 99, .	3.3	17
189	Exploitation of the coffee-ring effect to realize mechanically enhanced inkjet-printed microelectromechanical relays with U-bar-shaped cantilevers. Applied Physics Letters, 2014, 105, .	3.3	17
190	A new approach for high-yield metal–molecule–metal junctions by direct metal transfer method. Nanotechnology, 2015, 26, 025601.	2.6	17
191	Stretchable hybrid electronics: combining rigid electronic devices with stretchable interconnects into high-performance on-skin electronics. Journal of Information Display, 2022, 23, 163-184.	4.0	17
192	Reliable Organic Nonvolatile Memory Device Using a Polyfluorene-Derivative Single-Layer Film. IEEE Electron Device Letters, 2008, 29, 852-855.	3.9	16
193	Micro-scale twistable organic field effect transistors and complementary inverters fabricated by orthogonal photolithography on flexible polyimide substrate. Organic Electronics, 2014, 15, 2822-2829.	2.6	16
194	4K-bit and microlithographic integration of organic nonvolatile resistive memory devices. Organic Electronics, 2015, 17, 192-197.	2.6	16
195	Electronic noise analyses on organic electronic devices. Journal of Materials Chemistry C, 2017, 5, 7123-7141.	5.5	16
196	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	14.6	16
197	Towards flexible CMOS circuits. Nature Nanotechnology, 2020, 15, 11-12.	31.5	16
198	In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation. Nano Today, 2021, 39, 101226.	11.9	16

#	Article	IF	Citations
199	Recent progress in strain-engineered elastic platforms for stretchable thin-film devices. Materials Horizons, 2022, 9, 2053-2075.	12.2	16
200	Intrinsic Electronic Transport through Alkanedithiol Self-Assembled Monolayer. Japanese Journal of Applied Physics, 2005, 44, 523-529.	1.5	15
201	Formation mechanism of cerium oxide-doped indium oxide/Ag Ohmic contacts on p-type GaN. Applied Physics Letters, 2006, 89, 262115.	3.3	15
202	Memory characteristics of a self-assembled monolayer of Pt nanoparticles as a charge trapping layer. Nanotechnology, 2008, 19, 305704.	2.6	15
203	Nonvolatile resistive switching in Pr0.7Ca0.3MnO3 devices using multilayer graphene electrodes. Applied Physics Letters, 2011, 98, 032105.	3.3	15
204	The development of fluorous photolithographic materials and their applications to achieve flexible organic electronic devices. Flexible and Printed Electronics, 2016, 1, 023001.	2.7	15
205	Fully inkjet-printed short-channel organic thin-film transistors and inverter arrays on flexible substrates. Flexible and Printed Electronics, 2016, 1, 045003.	2.7	15
206	Investigation of threshold voltage instability induced by gate bias stress in ZnO nanowire field effect transistors. Nanotechnology, 2012, 23, 485201.	2.6	14
207	Laser direct writing and inkjet printing for a sub- $2i>i\frac{1}{4}m channel length MoS2transistor with high-resolution electrodes. Nanotechnology, 2016, 27, 405301.$	2.6	14
208	Analysis of the interface characteristics of CVD-grown monolayer MoS ₂ by noise measurements. Nanotechnology, 2017, 28, 145702.	2.6	14
209	Correlational Effects of the Molecular-Tilt Configuration and the Intermolecular van der Waals Interaction on the Charge Transport in the Molecular Junction. Nano Letters, 2018, 18, 4322-4330.	9.1	14
210	Stretchable strain-tolerant soft printed circuit board: a systematic approach for the design rules of stretchable interconnects. Journal of Information Display, 2020, 21, 41-47.	4.0	14
211	Short-channel effect and single-electron transport in individual indium oxide nanowires. Nanotechnology, 2007, 18, 435403.	2.6	13
212	Effect of molecular desorption on the electronic properties of self-assembled polarizable molecular monolayers. Journal of Colloid and Interface Science, 2014, 419, 39-45.	9.4	13
213	Facile anionic synthesis of a well-controlled thermally cross-linkable block copolymer for polymer-based resistive memory device applications. Polymer Chemistry, 2015, 6, 4264-4270.	3.9	13
214	Trapped charge modulation at the MoS ₂ /SiO ₂ interface by a lateral electric field in MoS ₂ field-effect transistors. Nano Futures, 2019, 3, 011002.	2.2	13
215	The Effect of Nanoscale Nonuniformity of Oxygen Vacancy on Electrical and Reliability Characteristics of \$hbox{HfO}_{2}\$ MOSFET Devices. IEEE Electron Device Letters, 2008, 29, 54-56.	3.9	12
216	Energy Consumption Estimation of Organic Nonvolatile Memory Devices on a Flexible Plastic Substrate. Advanced Electronic Materials, 2015, 1, 1500186.	5.1	12

#	Article	IF	CITATIONS
217	Fully Inkjetâ€Printed Stressâ€Tolerant Microelectromechanical Reed Relays for Largeâ€Area Electronics. Advanced Electronic Materials, 2016, 2, 1500482.	5.1	12
218	Electrical characterization of benzenedithiolate molecular electronic devices with graphene electrodes on rigid and flexible substrates. Nanotechnology, 2016, 27, 145301.	2.6	12
219	Self-assembled metal/molecule/semiconductor nanostructures for electronic device and contact applications. Journal of Electronic Materials, 2000, 29, 565-569.	2.2	11
220	Enhanced light output of GaN-based near-UV light-emitting diodes by using nanopatterned indium tin oxide electrodes. Semiconductor Science and Technology, 2006, 21, 594-597.	2.0	11
221	Effects of Oxygen Partial Pressure on the Electrical and Optical Properties of Pulsed-Laser-Deposited Sb-Doped SnO[sub 2] Films. Journal of the Electrochemical Society, 2006, 153, G922.	2.9	11
222	Fabrication and Characterization of Directly-Assembled ZnO Nanowire Field Effect Transistors with Polymer Gate Dielectrics. Journal of Nanoscience and Nanotechnology, 2007, 7, 4101-4105.	0.9	11
223	Recovery of dry etch-induced damage of nano-patterned GaN-based light-emitting diodes by rapid-thermal-annealing. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 881-886.	1.8	11
224	Well-Defined Block Copolymers with Triphenylamine and Isocyanate Moieties Synthesized via Living Anionic Polymerization for Polymer-Based Resistive Memory Applications: Effect of Morphological Structures on Nonvolatile Memory Performances. Macromolecules, 2014, 47, 8625-8633.	4.8	11
225	Facile anionic synthesis of well-defined block copolymers with pendent triphenylamine and ethynylpyridine for nonvolatile memory device applications with high performances. Journal of Polymer Science Part A, 2014, 52, 2625-2632.	2.3	11
226	Hydrogen plasma-mediated modification of the electrical transport properties of ZnO nanowire field effect transistors. Nanotechnology, 2015, 26, 125202.	2.6	11
227	Realization of an atomically flat BaSnO3(001) substrate with SnO2 termination. Applied Physics Letters, 2017, 111, .	3.3	11
228	Nanoscale enhancement of photoconductivity by localized charge traps in the grain structures of monolayer MoS2. Scientific Reports, 2018, 8, 15822.	3.3	11
229	Tailoring the Electrical Characteristics of MoS ₂ FETs through Controllable Surface Charge Transfer Doping Using Selective Inkjet Printing. ACS Nano, 2022, 16, 6215-6223.	14.6	11
230	Electronic transport and tip-loading force effect in self-assembled monolayer studied by conducting atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 583-588.	4.7	10
231	The application of conventional photolithography to microscale organic resistive memory devices. Current Applied Physics, 2012, 12, 940-944.	2.4	10
232	Demonstration of Addressable Organic Resistive Memory Utilizing a PC-Interface Memory Cell Tester. IEEE Electron Device Letters, 2013, 34, 51-53.	3.9	10
233	Vertically stacked microscale organic nonvolatile memory devices toward three-dimensional high integration. Organic Electronics, 2015, 21, 198-202.	2.6	10
234	Interface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 42043-42049.	8.0	10

#	Article	IF	CITATIONS
235	Enhanced Output Performance of All-Solution-Processed Organic Thermoelectrics: Spray Printing and Interface Engineering. ACS Applied Materials & Interfaces, 2020, 12, 26250-26257.	8.0	10
236	Crystallinity-dependent device characteristics of polycrystalline 2D n = 4 Ruddlesden–Popper perovskite photodetectors. Nanotechnology, 2021, 32, 185203.	2.6	10
237	Inkjet-Printing-Based Density Profile Engineering of Single-Walled Carbon Nanotube Networks for Conformable High-On/Off-Performance Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43163-43173.	8.0	10
238	Characterization of the tip-loading force-dependent tunneling behavior in alkanethiol metal–molecule–metal junctions by conducting atomic force microscopy. Ultramicroscopy, 2008, 108, 1196-1199.	1.9	9
239	Characteristics of light-induced electron transport from P3HT to ZnO-nanowire field-effect transistors. Applied Physics Letters, 2013, 103, 223305.	3.3	9
240	Analysis of noise generation and electric conduction at grain boundaries in CVD-grown MoS ₂ field effect transistors. Nanotechnology, 2017, 28, 47LT01.	2.6	9
241	Efficient Surface Treatment to Improve Contact Properties of Inkjet-Printed Short-Channel Organic Thin-Film Transistors. Journal of Nanoscience and Nanotechnology, 2017, 17, 5718-5721.	0.9	9
242	An on-chip hybrid plasmonic light steering concentrator with $\hat{a}^4/96\%$ coupling efficiency. Nanoscale, 2018, 10, 5097-5104.	5.6	9
243	Nearâ€Ultraviolet Structural Colors Generated by Aluminum Nanodisk Array for Bright Image Printing. Advanced Optical Materials, 2018, 6, 1800231.	7.3	9
244	Effect of Facile p-Doping on Electrical and Optoelectronic Characteristics of Ambipolar WSe2 Field-Effect Transistors. Nanoscale Research Letters, 2019, 14, 313.	5.7	9
245	Channel-Length-Modulated Avalanche Multiplication in Ambipolar WSe ₂ Field-Effect Transistors. ACS Nano, 2022, 16, 5376-5383.	14.6	9
246	Comparative study for electrical transport characteristics of self-assembled monolayers formed by benzenethiol, cyclohexanethiol, and adamantanethiol. Current Applied Physics, 2017, 17, 1459-1464.	2.4	8
247	Resistive Switching by Percolative Conducting Filaments in Organometal Perovskite Unipolar Memory Devices Analyzed Using Current Noise Spectra. Advanced Functional Materials, 2022, 32, 2107727.	14.9	8
248	Nano-Scale Memory Characteristics of Silicon Nitride Charge Trapping Layer with Silicon Nanocrystals. Japanese Journal of Applied Physics, 2006, 45, L807-L809.	1.5	7
249	A Special Issue — Selected Peer-Reviewed Papers from 2006 International Conference on Nanoscience and Nanotechnology, Gwangju, Korea. Journal of Nanoscience and Nanotechnology, 2007, 7, i-i.	0.9	7
250	Statistical representation of intrinsic electronic tunneling characteristics through alkyl self-assembled monolayers in nanowell device structures. Journal of Vacuum Science & Technology B, 2008, 26, 904.	1.3	7
251	Nonvolatile Write-Once-Read-Many Times Memory Devices Based on the Composites of Poly(4-vinylphenol)/Vulcan XC-72. Journal of Nanoscience and Nanotechnology, 2011, 11, 4492-4495.	0.9	7
252	Interface effect in pentacene field-effect transistors from high energy proton beam irradiation. Organic Electronics, 2015, 27, 240-246.	2.6	7

#	Article	IF	Citations
253	Statistical investigation of the length-dependent deviations in the electrical characteristics of molecular electronic junctions fabricated using the direct metal transfer method. Journal of Physics Condensed Matter, 2016, 28, 094003.	1.8	7
254	A High-Speed Inkjet-Printed Microelectromechanical Relay With a Mechanically Enhanced Double-Clamped Channel-Beam. Journal of Microelectromechanical Systems, 2017, 26, 95-101.	2.5	7
255	Electrical modulation of a photonic crystal band-edge laser with a graphene monolayer. Nanoscale, 2018, 10, 8496-8502.	5.6	7
256	Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors. Journal of the Korean Physical Society, 2018, 72, 1203-1208.	0.7	7
257	Cross-platform characterization of electron tunneling in molecular self-assembled monolayers. Current Applied Physics, 2005, 5, 213-217.	2.4	6
258	High density silicon nanocrystal embedded in sin prepared by low energy (>500eV) SiH/sub 4/ plasma immersion ion implantation for non-volatile memory applications. , 0, , .		6
259	Intrinsic Electronic Conduction Mechanisms in Self-Assembled Monolayers. , 2006, , 275-300.		6
260	Charge Transport of Alkanethiol Self-Assembled Monolayers in Micro-Via Hole Devices. Journal of Nanoscience and Nanotechnology, 2006, 6, 3487-3490.	0.9	6
261	Statistical Analysis of Electronic Transport Through Chemisorbed Versus Physisorbed Alkanethiol Self-Assembled Monolayers. IEEE Nanotechnology Magazine, 2008, 7, 140-144.	2.0	6
262	An amphiphilic C60 penta-addition derivative as a new U-type molecular rectifier. Organic Electronics, 2009, 10, 85-94.	2.6	6
263	Performance enhancement of triisopropylsilylethynyl pentacene organic field effect transistors with inkjet-printed silver source/drain electrodes achieved via dispersible reduced graphene oxide. Thin Solid Films, 2013, 542, 327-331.	1.8	6
264	Non-volatile memory characteristics of polyimide layers embedded with ZnO nanowires. Current Applied Physics, 2013, 13, 1237-1240.	2.4	6
265	Strain effects in a single ZnO microwire with wavy configurations. Nanotechnology, 2013, 24, 455703.	2.6	6
266	Highly uniform monolayer graphene synthesis <i>via</i> a facile pretreatment of copper catalyst substrates using an ammonium persulfate solution. RSC Advances, 2019, 9, 20871-20878.	3.6	6
267	Controllable deposition of organic metal halide perovskite films with wafer-scale uniformity by single source flash evaporation. Scientific Reports, 2020, 10, 18781.	3.3	6
268	Reversible Rectification of Microscale Ferroelectric Junctions Employing Liquid Metal Electrodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29885-29893.	8.0	6
269	Charge Storage Effect on In2O3Nanowires with Ruthenium Complex Molecules. Applied Physics Express, 2009, 2, 015001.	2.4	5
270	Analysis of surface states in ZnO nanowire field effect transistors. Applied Surface Science, 2014, 301, 2-8.	6.1	5

#	Article	IF	Citations
271	Attachable and flexible aluminum oxide resistive non-volatile memory arrays fabricated on tape as the substrate. Nanotechnology, 2017, 28, 135201.	2.6	5
272	Fabrication of Millimeter-Long Carbon Tubular Nanostructures Using the Self-Rolling Process Inherent in Elastic Protein Layers. Advanced Materials, 2017, 29, 1701732.	21.0	5
273	Peltier cooling at molecular scale. Nature Nanotechnology, 2018, 13, 97-99.	31.5	5
274	Dose-dependent effect of proton irradiation on electrical properties of WSe ₂ ambipolar field effect transistors. Nanoscale, 2019, 11, 13961-13967.	5.6	5
275	Allâ€Solidâ€State Organic Schmitt Trigger Implemented by Twin Twoâ€inâ€One Ferroelectric Memory Transistors. Advanced Electronic Materials, 2020, 6, 1901263.	5.1	5
276	Tailored Designâ€ofâ€Experiments Approach for Device Performance Prediction and Optimization of Flashâ€Evaporated Organic–Inorganic Halide Perovskiteâ€Based Photodetectors. Advanced Materials Technologies, 2021, 6, 2001131.	5.8	5
277	Temperature-Dependent Low-Frequency Noise Analysis of ZnO Nanowire Field-Effect Transistors. IEEE Transactions on Electron Devices, 2021, 68, 3532-3536.	3.0	5
278	Fabrication and Characterization of Directly-Assembled ZnO Nanowire Field Effect Transistors with Polymer Gate Dielectrics. Journal of Nanoscience and Nanotechnology, 2007, 7, 4101-4105.	0.9	5
279	Stable manipulating of nanowires by line optical tweezers with haptic feedback. Proceedings of SPIE, 2007, , .	0.8	4
280	Comparison of Si Doping Effect on GaN Nanowires and Films Synthesized by Metal-Organic Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2008, 8, 4934-4939.	0.9	4
281	Data retention characteristics of MANOS-type flash memory device with different metal gates at various levels of charge injection. Microelectronic Engineering, 2009, 86, 1804-1806.	2.4	4
282	Pâ€122: Solutionâ€processed Organic/Inorganic Hybrid CMOSâ€type Inverter. Digest of Technical Papers SID International Symposium, 2011, 42, 1563-1566.	0.3	4
283	Single-Molecule Devices: Single Molecule Electronic Devices (Adv. Mater. 14/2011). Advanced Materials, 2011, 23, 1576-1576.	21.0	4
284	In-Depth Study on the Effect of Active-Area Scale-Down of Solution-Processed \frac{TiO}_{x} . IEEE Electron Device Letters, 2012, 33, 869-871.	3.9	4
285	UV photoconductivity characteristics of ZnO nanowire field effect transistor treated by proton irradiation. Thin Solid Films, 2012, 520, 3624-3628.	1.8	4
286	Non-volatile aluminum oxide resistive memory devices on a wrapping paper substrate. Flexible and Printed Electronics, 2016, 1, 034001.	2.7	4
287	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	14.6	4
288	Resistiveâ€Switching Memory: Investigation of Timeâ€"Dependent Resistive Switching Behaviors of Unipolar Nonvolatile Organic Memory Devices (Adv. Funct. Mater. 35/2018). Advanced Functional Materials, 2018, 28, 1870249.	14.9	4

#	Article	IF	Citations
289	Effect of High-Energy Proton Irradiation of ZnO-Nanowire Field-Effect Transistors. Journal of the Korean Physical Society, 2008, 52, 848-852.	0.7	4
290	Effect of Ag nanoparticles on resistive switching of polyfluorene based organic non-volatile memory devices. Journal of the Korean Physical Society, 2010, 56, 128-132.	0.7	4
291	Photoâ€Responsive Molecular Junctions Activated by Perovskite/Graphene Heterostructure Electrode. Advanced Optical Materials, 2022, 10, .	7.3	4
292	Effects of Protons, Electrons, and UV Radiation on Carbon Nanotubes. ACS Symposium Series, 2007, , 232-252.	0.5	3
293	Statistical Analysis of Metal-Molecule Contacts in Alkyl Molecular Junctions: Sulfur versus Selenium End-Group. Journal of Nanoscience and Nanotechnology, 2009, 9, 7012-5.	0.9	3
294	Characterization on Improved Effective Mobility of Pentacene Organic Field-Effect Transistors Using Graphene Electrodes. Japanese Journal of Applied Physics, 2012, 51, 02BK09.	1.5	3
295	Proton Irradiation-Induced Electrostatic Modulation in ZnO Nanowire Field-Effect Transistors With Bilayer Gate Dielectric. IEEE Nanotechnology Magazine, 2012, 11, 918-923.	2.0	3
296	Flexible High-Performance All-Inkjet-Printed Inverters: Organo-Compatible and Stable Interface Engineering (Adv. Mater. 34/2013). Advanced Materials, 2013, 25, 4772-4772.	21.0	3
297	Temperature Dependence of Electron Transport in ZnO Nanowire Field Effect Transistors. IEEE Transactions on Electron Devices, 2014, 61, 625-630.	3.0	3
298	Inelastic electron tunneling spectroscopy of molecular transport junctions. Journal of the Korean Physical Society, 2014, 64, 1539-1544.	0.7	3
299	Study on the Origin of Amorphous Carbon Peaks on Graphene Films Synthesized on Nickel Catalysts. Journal of Nanoscience and Nanotechnology, 2014, 14, 4982-4987.	0.9	3
300	Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes. Nanotechnology, 2016, 27, 475201.	2.6	3
301	Integration of Flexible and Microscale Organic Nonvolatile Resistive Memory Devices Using Orthogonal Photolithography. Journal of Nanoscience and Nanotechnology, 2016, 16, 6350-6354.	0.9	3
302	Molecular Devices: Shaping the Atomicâ€Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices (Small 15/2018). Small, 2018, 14, 1870066.	10.0	3
303	Solutionâ€Processed Transparent Superhydrophobic Protection Layers for Enhancing the Device Reliability of Flexible Organic Optoelectronics. Advanced Materials Technologies, 2020, 5, 2000449.	5.8	3
304	Printed carbon electronics get recycled. Nature Electronics, 2021, 4, 241-242.	26.0	3
305	High-Transmittance NiSc/Ag/ITO p-Type Ohmic Electrode for Near-UV GaN-Based Light-Emitting Diodes. Journal of the Korean Physical Society, 2007, 51, 159.	0.7	3
306	A Special Issueâ€"Selected Peer-Reviewed Papers from 2005 International Conference on Nanoscience and Nanotechnology, GIST, South Korea. Journal of Nanoscience and Nanotechnology, 2006, 6, i-ii.	0.9	2

#	Article	IF	CITATIONS
307	Characterization of ZnO Nanowire Field Effect Transistors by Fast Hydrogen Peroxide Solution Treatment. Japanese Journal of Applied Physics, 2012, 51, 035001.	1.5	2
308	Molecular Electronics: Mechanically Controllable Break Junctions for Molecular Electronics (Adv.) Tj ETQq0 0 0 rg	BT/Overlo	ock_10 Tf 50
309	Enhanced Photoâ€Response of Mos 2 Photodetectors by a Laterally Aligned SiO 2 Nanoribbon Array Substrate. ChemNanoMat, 2019, 5, 1272-1279.	2.8	2
310	Organic Field-Effect Transistors: Enhanced Charge Injection Properties of Organic Field-Effect Transistor by Molecular Implantation Doping (Adv. Mater. 10/2019). Advanced Materials, 2019, 31, 1970073.	21.0	2
311	Large-area molecular monolayer-based electronic junctions with transferred top electrodes. Japanese Journal of Applied Physics, 2020, 59, SD0803.	1.5	2
312	Characterization on Improved Effective Mobility of Pentacene Organic Field-Effect Transistors Using Graphene Electrodes. Japanese Journal of Applied Physics, 2012, 51, 02BK09.	1.5	2
313	Electrical Characteristics of Benzenedithiol versus Methylbenzenthiol Self-Assembled Monolayers in Multilayer Graphene-Electrode Molecular Junctions. Journal of Nanoscience and Nanotechnology, 2016, 16, 8565-8568.	0.9	2
314	Proton irradiation effects on mechanochemically synthesized and flash-evaporated hybrid organic-inorganic lead halide perovskites. Nanotechnology, 2021, 33, .	2.6	2
315	Comment on "Fabrication of a Molecular Self-Assembled Monolayer Diode Using Nanoimprint Lithography― Nano Letters, 2004, 4, 533-533.	9.1	1
316	Electrical transport properties of VO <inf>2</inf> nanowire field effect transistors., 2006,,.		1
317	Fabrication of ball-shaped atomic force microscope tips by ion-beam-induced deposition of platinum on multiwall carbon nanotubes. Ultramicroscopy, 2009, 110, 82-88.	1.9	1
318	Noise in ZnO Nanowire Field Effect Transistors. Journal of Nanoscience and Nanotechnology, 2009, 9, 1041-1044.	0.9	1
319	Tuning of the electronic characteristics of ZnO nanowire transistors and their logic device application. Proceedings of SPIE, 2010, , .	0.8	1
320	INTRODUCTION TO NANOSCALE INTERFACE. , 2010, , 3-8.		1
321	Observation of orbital gate modulation in molecular junctions. , 2010, , .		1
322	Organic resistive memory devices: Performance enhancement and advanced integration architecture. , $2011, \ldots$		1
323	Write-Once-Read-Many (WORM) Times Memory Devices Based On The Composite Of Vulcan XC-72â-Poly(4-vinylphenol). AIP Conference Proceedings, 2011, , .	0.4	1
324	Effect Of Molecular Tilt Configuration On Molecular Electronic Conduction. AIP Conference Proceedings, 2011, , .	0.4	1

#	Article	IF	CITATIONS
325	Unipolar Bistable Switching of Organic Non-Volatile Memory Devices with Poly(styrene-co-styrenesulfonic acid Na). Journal of Nanoscience and Nanotechnology, 2011, 11, 1385-1388.	0.9	1
326	Pâ€114: Investigation of TIPSâ€pentacene on Inkjetâ€Printed Silver Source/Drain Electrodes. Digest of Technical Papers SID International Symposium, 2011, 42, 1535-1538.	0.3	1
327	Organic Electronics: Grapheneâ€Conducting Polymer Hybrid Transparent Electrodes for Efficient Organic Optoelectronic Devices (Adv. Funct. Mater. 13/2014). Advanced Functional Materials, 2014, 24, 1960-1960.	14.9	1
328	Molecular Electronics: Redox-Induced Asymmetric Electrical Characteristics of Ferrocene-Alkanethiolate Molecular Devices on Rigid and Flexible Substrates (Adv. Funct. Mater.) Tj ETQq0 0 0 rg	gBTI#Ooverlo	ock 10 Tf 50
329	Statistical Analysis of Electrical Properties of Octanemonothiol versus Octanedithol in PEDOT:PSS-Electrode Molecular Junctions. Journal of Nanoscience and Nanotechnology, 2015, 15, 5937-5941.	0.9	1
330	Tailoring the electrical properties of MoS2field effect transistors by depositing Au nanoparticles and alkanethiol molecules. Journal of Physics Condensed Matter, 2016, 28, 184003.	1.8	1
331	71-2: <i>Invited Paper</i> : Printed Transistors and MEMS for Large-Area Electronics. Digest of Technical Papers SID International Symposium, 2016, 47, 956-959.	0.3	1
332	Fieldâ€Effect Transistors: Contactâ€Engineered Electrical Properties of MoS ₂ Fieldâ€Effect Transistors via Selectively Deposited Thiolâ€Molecules (Adv. Mater. 18/2018). Advanced Materials, 2018, 30, 1870129.	21.0	1
333	Miniaturization and Integration of Organic Resistive Memory Devices. Journal of the Korean Physical Society, 2018, 73, 479-487.	0.7	1
334	Enhanced Thermoelectric Power Factor in Carrierâ€Typeâ€Controlled Platinum Diselenide Nanosheets by Molecular Chargeâ€Transfer Doping. Small, 2022, , 2200818.	10.0	1
335	Inelastic electron tunneling spectroscopy of an alkane SAM., 0,,.		0
336	Self-assembled monolayer molecular devices. , 0, , .		0
337	Comparisons of charge transport through alkane- monothiols and dithiols. , 2006, , .		0
338	Molecular chain-to-chain tunneling and nanowell devices for electronic transport studies in metalalkanethiol-metal junctions. , 2006 , , .		0
339	Characterization of ZnO nanowire field-effect transistors exposed to high energy proton radiation. , 2006, , .		0
340	Electronic transport in indium oxide nanowire field effect transistors., 2006,,.		0
341	Length-dependent electronic transport through alkane-dithiol self-assembled monolayer junctions. , 2006, , .		0
342	Random Telegraph Signals and $1/\!f$ Noise in ZnO Nanowire Field Effect Transistors. , 2007, , .		О

#	Article	IF	CITATIONS
343	Measurements for the reliability and electrical characterization of semiconductor nanowires. , 2008, , .		0
344	<i>A Special Issue on </i> : 2007 International Conference on Nanoscience and Nanotechnology (GJ-NST2007). Journal of Nanoscience and Nanotechnology, 2008, 8, 4903-4906.	0.9	0
345	Resistive switching characteristics of solution-processible TiO < inf > x < / inf > using nano-scale via-hole structures. , 2009, , .		O
346	Outstanding flexibility of organic memory devices with transparent graphene top electrodes. , 2011, , .		0
347	Synthesis of Graphene Films by Chemical Vapor Deposition for Transparent Conducting Electrodes of GaN Light-Emitting Diodes. , $2011, \ldots$		0
348	Selected Peer-Reviewed Articles from 2010 International Conference on Nanoscience and Nanotechnology (ICNST 2010). Journal of Nanoscience and Nanotechnology, 2011, 11, 7050-7052.	0.9	0
349	Reversible Switching Characteristic Of One Diode-One Resistor For Nonvolatile Organic Memory Applications. AIP Conference Proceedings, $2011, \ldots$	0.4	0
350	Characterization of Organic Field Effect Transistors with Graphene Electrodes. , 2011, , .		0
351	Photosensing Properties of ZnO Nanowires by a Solvent-driven Treatment. AIP Conference Proceedings, 2011, , .	0.4	0
352	Large-Area, Transparent And Conductive Graphene Electrode For Bulk-Heterojunction Photovoltaic Devices. , 2011, , .		0
353	Memory Devices: Structural and Electrical Characterization of a Block Copolymer-Based Unipolar Nonvolatile Memory Device (Adv. Mater. 3/2012). Advanced Materials, 2012, 24, 322-322.	21.0	0
354	Corrections to "Demonstration of Addressable Organic Resistive Memory Utilizing a PC-Interface Memory Cell Tester―[Jan 13 51-53]. IEEE Electron Device Letters, 2013, 34, 468-468.	3.9	0
355	Single-molecule devices reveal step-by-step dynamics of hydrogen bonds. Science China Chemistry, 2018, 61, 639-640.	8.2	0
356	Perovskite Photodetector Devices: Tailored Designâ€ofâ€Experiments Approach for Device Performance Prediction and Optimization of Flashâ€Evaporated Organic–Inorganic Halide Perovskiteâ€Based Photodetectors (Adv. Mater. Technol. 5/2021). Advanced Materials Technologies, 2021, 6, 2170029.	5.8	0
357	STATISTICAL ANALYSIS OF ELECTRONIC TRANSPORT PROPERTIES OF ALKANETHIOL MOLECULAR JUNCTIONS. , 2010, , 121-150.		0
358	Characterization of ZnO Nanowire Field Effect Transistors by Fast Hydrogen Peroxide Solution Treatment. Japanese Journal of Applied Physics, 2012, 51, 035001.	1.5	0
359	Introduction to research of atomically thin MoS2and its electrical properties. Vacuum Magazine, 2016, 3, 9-15.	0.0	0
360	Domain Aligned Growth of Molybdenum Disulfide on Various Substrates by Chemical Vapor Deposition. Science of Advanced Materials, 2016, 8, 1683-1687.	0.7	0

TAKHEE LEE

#	Article	IF	CITATIONS
361	Electrical Characteristics of Molecular Junctions Fabricated by Inverted Self-Assembled Monolayer Method. Journal of Nanoscience and Nanotechnology, 2020, 20, 4648-4651.	0.9	0
362	Introduction to Molecular Interface Engineering of Transition Metal Dichalcogenide-based Devices. , $2021,,43\text{-}91.$		0
363	Mark A. Reed (1955–2021). Nature Nanotechnology, 2022, , .	31.5	0