
Christian France-Lanord

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4728768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 1999, 159, 31-60.	3.3	567
2	Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 2007, 450, 407-410.	27.8	562
3	Crustal generation of the Himalayan leucogranites. Tectonophysics, 1987, 134, 39-57.	2.2	451
4	Asian monsoons in a late Eocene greenhouse world. Nature, 2014, 513, 501-506.	27.8	386
5	Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology, 2001, 29, 23.	4.4	361
6	Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 1997, 390, 65-67.	27.8	353
7	Neogene Himalayan weathering history and river87Sr86Sr: impact on the marine Sr record. Earth and Planetary Science Letters, 1996, 142, 59-74.	4.4	324
8	Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 2011, 302, 107-120.	4.4	296
9	Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochimica Et Cosmochimica Acta, 2008, 72, 780-792.	3.9	266
10	Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives. Geology, 2007, 35, 1003.	4.4	257
11	The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh. Geochimica Et Cosmochimica Acta, 1999, 63, 1905-1925.	3.9	253
12	Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	243
13	Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochimica Et Cosmochimica Acta, 2012, 84, 410-432.	3.9	234
14	Mineralogical and chemical variability of fluvial sediments1. Bedload sand (Ganga–Brahmaputra,) Tj ETQq0 0 0	rgBT /Ove 4.4	rlock 10 Tf 5
15	Recycling of Graphite During Himalayan Erosion: A Geological Stabilization of Carbon in the Crust. Science, 2008, 322, 943-945.	12.6	205
16	Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments. Earth and Planetary Science Letters, 2002, 202, 645-662.	4.4	198
17	Loading and fate of particulate organic carbon from the Himalaya to the Ganga–Brahmaputra delta. Geochimica Et Cosmochimica Acta, 2008, 72, 1767-1787.	3.9	187

Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth and
Planetary Science Letters, 2013, 365, 243-252.

#	Article	IF	CITATIONS
19	Chemical erosion in the eastern Himalaya: Major ion composition of the Brahmaputra and δ13C of dissolved inorganic carbon. Geochimica Et Cosmochimica Acta, 2005, 69, 3573-3588.	3.9	174
20	Badrinath-Gangotri plutons (Garhwal, India): petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite. Journal of Volcanology and Geothermal Research, 1990, 44, 163-188.	2.1	168
21	pH control on oxygen isotopic composition of symbiotic corals. Earth and Planetary Science Letters, 2003, 215, 275-288.	4.4	162
22	Evolution of the Himalaya since Miocene time: isotopic and sedimentological evidence from the Bengal Fan. Geological Society Special Publication, 1993, 74, 603-621.	1.3	158
23	Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 1993, 364, 48-50.	27.8	154
24	Sand petrology and focused erosion in collision orogens: the Brahmaputra case. Earth and Planetary Science Letters, 2004, 220, 157-174.	4.4	139
25	Magnesium isotope systematics of the lithologically varied Moselle river basin, France. Geochimica Et Cosmochimica Acta, 2008, 72, 5070-5089.	3.9	138
26	Root exudates modify bacterial diversity of phenanthrene degraders in PAHâ€polluted soil but not phenanthrene degradation rates. Environmental Microbiology, 2011, 13, 722-736.	3.8	137
27	Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion. Earth and Planetary Science Letters, 2014, 401, 359-372.	4.4	137
28	10Be-derived Himalayan denudation rates and sediment budgets in the Ganga basin. Earth and Planetary Science Letters, 2012, 333-334, 146-156.	4.4	135
29	of organic carbon in the Bengal Fan: Source evolution and transport of C3 and C4 plant carbon to marine sediments. Geochimica Et Cosmochimica Acta, 1994, 58, 4809-4814.	3.9	132
30	A Rouse-based method to integrate the chemical composition of river sediments: Application to the Ganga basin. Journal of Geophysical Research, 2011, 116, .	3.3	132
31	Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology, 2010, 38, 255-258.	4.4	130
32	Crustal melting and granite genesis during the Himalayan collision orogenesis. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1988, 79, 183-195.	0.3	129
33	Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers. Geochimica Et Cosmochimica Acta, 2000, 64, 397-408.	3.9	129
34	Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles. Geochimica Et Cosmochimica Acta, 2014, 133, 280-298.	3.9	122
35	C4 plants decline in the Himalayan basin since the Last Glacial Maximum. Quaternary Science Reviews, 2008, 27, 1396-1409.	3.0	119
36	Turbulent mixing in the Amazon River: The isotopic memory of confluences. Earth and Planetary Science Letters, 2010, 290, 37-43.	4.4	118

#	Article	IF	CITATIONS
37	Which minerals control the Nd–Hf–Sr–Pb isotopic compositions of river sediments?. Chemical Geology, 2014, 364, 42-55.	3.3	114
38	Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya). Earth and Planetary Science Letters, 2007, 258, 500-515.	4.4	113
39	Hydrogen and oxygen isotope variations in the high himalaya peraluminous Manaslu leucogranite: Evidence for heterogeneous sedimentary source. Geochimica Et Cosmochimica Acta, 1988, 52, 513-526.	3.9	111
40	Enrichment of deuterium in insoluble organic matter from primitive meteorites: A solar system origin?. Earth and Planetary Science Letters, 2006, 243, 15-25.	4.4	111
41	The provenance of vegetation and environmental signatures encoded in vascular plant biomarkers carried by the Ganges–Brahmaputra rivers. Earth and Planetary Science Letters, 2011, 304, 1-12.	4.4	107
42	Propagation of the thrust system and erosion in the Lesser Himalaya: Geochemical and sedimentological evidence. Geology, 2001, 29, 1007.	4.4	104
43	lsotopic tracing of the dissolved U fluxes of Himalayan rivers: implications for present and past U budgets of the Ganges-Brahmaputra system. Geochimica Et Cosmochimica Acta, 2001, 65, 3201-3217.	3.9	101
44	Degassing of metamorphic carbon dioxide from the Nepal Himalaya. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	101
45	Neogene growth of the sedimentary organic carbon reservoir. Paleoceanography, 1996, 11, 267-275.	3.0	100
46	Time-scales of sedimentary transfer and weathering processes from U-series nuclides: Clues from the Himalayan rivers. Earth and Planetary Science Letters, 2007, 261, 389-406.	4.4	98
47	Floodplains of large rivers: Weathering reactors or simple silos?. Chemical Geology, 2012, 332-333, 166-184.	3.3	96
48	Continental sedimentary processes decouple Nd and Hf isotopes. Geochimica Et Cosmochimica Acta, 2013, 121, 177-195.	3.9	85
49	Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2. Geochimica Et Cosmochimica Acta, 2017, 200, 123-144.	3.9	85
50	U-series disequilibria in suspended river sediments and implication for sediment transfer time in alluvial plains: The case of the Himalayan rivers. Geochimica Et Cosmochimica Acta, 2010, 74, 2851-2865.	3.9	80
51	Oxygen isotope composition as a tracer for the origins of rubies and sapphires. Geology, 2005, 33, 249.	4.4	79
52	Sr–Nd–Os evidence for a stable erosion regime in the Himalaya during the past 12Myr. Earth and Planetary Science Letters, 2010, 290, 474-480.	4.4	79
53	The Late Oligocene-Early Miocene Himalayan belt Constraints deduced from isotopic compositions of Early Miocene turbidites in the Bengal Fan. Tectonophysics, 1996, 260, 109-118.	2.2	73
54	How important is it to integrate riverine suspended sediment chemical composition with depth? Clues from Amazon River depth-profiles. Geochimica Et Cosmochimica Acta, 2011, 75, 6955-6970.	3.9	73

#	Article	IF	CITATIONS
55	Sedimentology and chemostratigraphy of the Bwipe Neoproterozoic cap dolostones (Ghana, Volta) Tj ETQq1 339, 223-239.	1 0.784314 ı 1.2	rgBT /Overlo 70
56	History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling?. Earth and Planetary Science Letters, 2017, 474, 296-308.	4.4	68
57	Geological and land use control on δ34S and δ18O of river dissolved sulfate: The Moselle river basin, France. Chemical Geology, 2007, 244, 25-41.	3.3	67
58	A palaeo Tibet–Myanmar connection? Reconstructing the Late Eocene drainage system of central Myanmar using a multi-proxy approach. Journal of the Geological Society, 2013, 170, 929-939.	2.1	66
59	Fluid Composition, ÎƊ of Channel H ₂ 0, and δ ¹⁸ 0 of Lattice Oxygen in Beryls: Genetic Implications for Brazilian, Colombian, and Afghanistani Emerald Deposits. International Geology Review, 1997, 39, 400-424.	2.1	65
60	Oxygen Isotopes and Emerald Trade Routes Since Antiquity. Science, 2000, 287, 631-633.	12.6	65
61	Linked fluid and tectonic evolution in the High Himalaya mountains (Nepal). Contributions To Mineralogy and Petrology, 1991, 107, 358-372.	3.1	63
62	Hydrothermal source of radiogenic Sr to Himalayan rivers. Geology, 2001, 29, 803.	4.4	63
63	Geochemical evidence for efficient aquifer isolation over geological timeframes. Nature, 2003, 425, 55-58.	27.8	63
64	Sr and 87Sr/86Sr in waters and sediments of the Brahmaputra river system: Silicate weathering, CO2 consumption and Sr flux. Chemical Geology, 2006, 234, 308-320.	3.3	62
65	Prediction of depthâ€integrated fluxes of suspended sediment in the Amazon River: particle aggregation as a complicating factor. Hydrological Processes, 2011, 25, 778-794.	2.6	58
66	Behavior of Re and Os during low-temperature alteration: Results from Himalayan soils and altered black shales. Geochimica Et Cosmochimica Acta, 2002, 66, 1539-1548.	3.9	57
67	Oxygen isotope systematics of emerald: relevance for its origin and geological significance. Mineralium Deposita, 1998, 33, 513-519.	4.1	55
68	The Os isotopic composition of Himalayan river bedloads and bedrocks: importance of black shales. Earth and Planetary Science Letters, 2000, 176, 203-218.	4.4	55
69	Geothermal fluxes of alkalinity in the Narayani river system of central Nepal. Geochemistry, Geophysics, Geosystems, 2004, 5, .	2.5	55
70	Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. Science of the Total Environment, 2014, 481, 459-468.	8.0	55
71	C and O isotope compositions of modern fresh-water mollusc shells and river waters from the Himalaya and Ganga plain. Chemical Geology, 2006, 233, 156-183.	3.3	53
72	Annual dissolved fluxes from Central Nepal rivers: budget of chemical erosion in the Himalayas. Comptes Rendus - Geoscience, 2003, 335, 1131-1140.	1.2	52

#	Article	IF	CITATIONS
73	Determination of Total Organic Carbon Content and Î́ ¹³ C in Carbonateâ€Rich Detrital Sediments. Geostandards and Geoanalytical Research, 2007, 31, 199-207.	1.9	52
74	Fluid record of rock exhumation across the brittle–ductile transition during formation of a Metamorphic Core Complex (Naxos Island, Cyclades, Greece). Journal of Metamorphic Geology, 2013, 31, 313-338.	3.4	52
75	Steady erosion rates in the Himalayas through late Cenozoic climatic changes. Nature Geoscience, 2020, 13, 448-452.	12.9	51
76	A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal. Earth and Planetary Science Letters, 2009, 278, 198-207.	4.4	49
77	Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa. Gondwana Research, 2016, 37, 384-396.	6.0	49
78	Oxygen isotope composition of garnet and spinel peridotites in the continental mantle: Evidence from the Vitim xenolith suite, southern Siberia. Geochimica Et Cosmochimica Acta, 1994, 58, 1463-1470.	3.9	48
79	Os-Sr-Nd results from sediments in the Bay of Bengal: Implications for sediment transport and the marine Os record. Paleoceanography, 2001, 16, 435-444.	3.0	46
80	lsotopic tracing of clear water sources in an urban sewer: A combined water and dissolved sulfate stable isotope approach. Water Research, 2010, 44, 256-266.	11.3	46
81	The Syabruâ€Bensi hydrothermal system in central Nepal: 1. Characterization of carbon dioxide and radon fluxes. Journal of Geophysical Research: Solid Earth, 2014, 119, 4017-4055.	3.4	45
82	Monsoonal forcing of Holocene glacier fluctuations in Ganesh Himal (Central Nepal) constrained by cosmogenic 3He exposure ages of garnets. Earth and Planetary Science Letters, 2006, 252, 275-288.	4.4	44
83	Biological control of internal pH in scleractinian corals: Implications on paleo-pH and paleo-temperature reconstructions. Comptes Rendus - Geoscience, 2011, 343, 397-405.	1.2	44
84	From evaporated seawater to uranium-mineralizing brines: Isotopic and trace element study of quartz–dolomite veins in the Athabasca system. Geochimica Et Cosmochimica Acta, 2013, 113, 38-59.	3.9	44
85	Chemical and isotopic (87Sr/86Sr, δ18O, ÎƊ) constraints to the formation processes of Red-Sea brines. Geochimica Et Cosmochimica Acta, 2001, 65, 1259-1275.	3.9	43
86	Cenozoic evolution of the central Myanmar drainage system: insights from sediment provenance in the Minbu Subâ€Basin. Basin Research, 2016, 28, 237-251.	2.7	43
87	Sustained wood burial in the Bengal Fan over the last 19 My. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22518-22525.	7.1	43
88	Fluxes and sources of particulate organic carbon in the Ganga-Brahmaputra river system. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	42
89	238U–234U–230Th disequilibria and timescale of sedimentary transfers in rivers: Clues from the Gangetic plain rivers. Journal of Geochemical Exploration, 2006, 88, 373-375.	3.2	41
90	Post-glacial climate forcing of surface processes in the Ganges–Brahmaputra river basin and implications for carbon sequestration. Earth and Planetary Science Letters, 2017, 478, 89-101.	4.4	41

#	Article	IF	CITATIONS
91	Cosmogenic 3He in Himalayan garnets indicating an altitude dependence of the 3He/10Be production ratio. Earth and Planetary Science Letters, 2004, 229, 91-104.	4.4	40
92	Hydrothermal heat flow near the Main Central Thrust, central Nepal Himalaya. Earth and Planetary Science Letters, 2009, 286, 101-109.	4.4	40
93	Monsoon control over erosion patterns in the Western Himalaya: possible feed-back into the tectonic evolution. Geological Society Special Publication, 2010, 342, 185-218.	1.3	40
94	Grain-size dependent concentration of cosmogenic 10Be and erosion dynamics in a landslide-dominated Himalayan watershed. Geomorphology, 2014, 224, 55-68.	2.6	40
95	Himalayan Weathering and Erosion Fluxes: Climate and Tectonic Controls. , 1997, , 289-312.		37
96	Sedimentology and Isotopic Chemistry of the Bengal Fan Sediments: The Denudation of the Himalaya. , 0, , .		37
97	Persistent CO2 emissions and hydrothermal unrest following the 2015 earthquake in Nepal. Nature Communications, 2018, 9, 2956.	12.8	36
98	¹⁰ Be systematics in the Tsangpo-Brahmaputra catchment: the cosmogenic nuclide legacy of the eastern Himalayan syntaxis. Earth Surface Dynamics, 2017, 5, 429-449.	2.4	35
99	Interactions between tectonics and fluid circulations in an inverted hyper-extended basin: Example of mesozoic carbonate rocks of the western North Pyrenean Zone (Chaînons Béarnais, France). Marine and Petroleum Geology, 2017, 80, 563-586.	3.3	32
100	CO2-Laser Extraction-Static Mass Spectrometry Analysis of Ultra-Low Concentrations of Nitrogen in Silicates. Geostandards and Geoanalytical Research, 2000, 24, 255-260.	3.1	29
101	Water-saturated oceanic lavas from the Manus Basin: volatile behaviour during assimilation–fractional crystallisation–degassing (AFCD). Journal of Volcanology and Geothermal Research, 2001, 108, 1-10.	2.1	29
102	Sulfate Reduction by Organic Matter in Colombian Emerald Deposits: Chemical and Stable Isotope (C,) Tj ETQq0 C)	Verlock 10
103	Large-scale organization of carbon dioxide discharge in the Nepal Himalayas. Geophysical Research Letters, 2014, 41, 6358-6366.	4.0	26
104	Re-Os isotope systematics of sediments of the Brahmaputra River system. Geochimica Et Cosmochimica Acta, 2003, 67, 4101-4111.	3.9	24
105	Origin of arsenic in Late Pleistocene to Holocene sediments in the Nawalparasi district (Terai, Nepal). Environmental Earth Sciences, 2015, 74, 2571-2593.	2.7	24
106	Annual Sediment Transport Dynamics in the Narayani Basin, Central Nepal: Assessing the Impacts of Erosion Processes in the Annual Sediment Budget. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2341-2376.	2.8	23
107	Provenance of Bengal Shelf Sediments: 2. Petrology and Geochemistry of Sand. Minerals (Basel,) Tj ETQq1 1 0.784	4314 rgBT	/Overlock

Role of permeability barriers in alluvial hydromorphic palaeosols: The Eocene Pondaung Formation, Myanmar. Sedimentology, 2014, 61, 362-382.

3.1 22

#	Article	IF	CITATIONS
109	Removing the "heavy mineral effect―to obtain a new Pb isotopic value for the upper crust. Geochemistry, Geophysics, Geosystems, 2013, 14, 3324-3333.	2.5	20
110	An unshakable carbon budget for the Himalaya. Nature Geoscience, 2021, 14, 745-750.	12.9	20
111	Expedition 354 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	20
112	U-series disequilibria in minerals from Gandak River sediments (Himalaya). Chemical Geology, 2018, 477, 22-34.	3.3	19
113	Site U1451. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	18
114	Provenance of Bengal Shelf Sediments: 1. Mineralogy and Geochemistry of Silt. Minerals (Basel,) Tj ETQq0 0 0 rgB	BT /Overloo 2.0	ck 10 Tf 50 5
115	Effective radium concentration across the Main Central Thrust in the Nepal Himalayas. Geochimica Et Cosmochimica Acta, 2012, 98, 203-227.	3.9	16
116	Expedition 354 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	16
117	U–Th–Ra variations in Himalayan river sediments (Gandak river, India): Weathering fractionation and/or grain-size sorting?. Geochimica Et Cosmochimica Acta, 2016, 193, 176-196.	3.9	15
118	The Cenomanian—Turonian Boundary Event (CTBE) in north-central Tunisia (Jebels Serj and Bargou) integrated into regional data (Algeria to Tunisia). Cretaceous Research, 2019, 94, 108-125.	1.4	15
119	Sulfate Reduction by Organic Matter in Colombian EmeraldDeposits: Chemical and Stable Isotope (C, O,) Tj ETQq	1 <u>1 0</u> .784	314 rgBT /0
120	Impact of sediment–seawater cation exchange on Himalayan chemical weathering fluxes. Earth Surface Dynamics, 2016, 4, 675-684.	2.4	13
121	Middle to Late Pleistocene Architecture and Stratigraphy of the Lower Bengal Fan—Integrating Multichannel Seismic Data and IODP Expedition 354 Results. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008702.	2.5	13
	⁴⁰ Ar/ ³⁹ Ar ages of muscovites from modern Himalavan rivers: Himalavan		

122	evolution and the relative contribution of tectonics and climate. , 2015, 11, 1837-1859.		12
123	Impure marbles of the Lesser Himalaya: another source of continental radiogenic osmium. Earth and Planetary Science Letters, 2002, 204, 203-214.	4.4	11
124	Origins of formation waters in the <scp>L</scp> lanos foreland basin of <scp>C</scp> olombia: geochemical variation and fluid flow history. Geofluids, 2014, 14, 443-458.	0.7	10
125	Isotopic chemistry and sedimentology of the Bengal fan sediments: The denudation of the Himalaya. Chemical Geology, 1990, 84, 368-370.	3.3	9
	Oction to provide the second state and bulk and month from the Pengel Fan, Farth and Planetary		

126Os isotopic compositions of leachates and bulk sediments from the Bengal Fan. Earth and Planetary
Science Letters, 1997, 150, 117-127.4.49

#	Article	IF	CITATIONS
127	Middle to Late Pleistocene Evolution of the Bengal Fan: Integrating Core and Seismic Observations for Chronostratigraphic Modeling of the IODP Expedition 354 8Ű North Transect. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008878.	2.5	8
128	Site U1452. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	8
129	Isotope Geochemistry of Leg 129 Basalts: Implications for the Origin of the Widespread Cretaceous Volcanic Event in the Pacific. , 0, , .		7
130	Site U1450. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	7
131	Validation and calibration of soil δ2H and brGDGTs along (E-W) and strike (N-S) of the Himalayan climatic gradient. Geochimica Et Cosmochimica Acta, 2020, 290, 408-423.	3.9	6
132	Molecular Tracing of Riverine Soil Organic Matter From the Central Himalaya. Geophysical Research Letters, 2020, 47, e2020GL087403.	4.0	6
133	Data report: calcareous nannofossils and lithologic constraints on the age model of IODP Site U1450, Expedition 354, Bengal Fan. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	6
134	Tracing Silicate Weathering in the Himalaya Using the 40K-40Ca System: A Reconnaissance Study. Procedia Earth and Planetary Science, 2014, 10, 238-242.	0.6	5
135	Insights into stable isotope characterization to monitor the signification of soil water sampling for environmental studies dealing with soil water dynamics through the unsaturated zone. Comptes Rendus - Geoscience, 2015, 347, 317-327.	1.2	5
136	A 6 Ma record of palaeodenudation in the central Himalayas from in situ cosmogenic ¹⁰ Be in the Surai section. Basin Research, 2021, 33, 1218-1239.	2.7	5
137	Miocene Tuff from Mariana Basin, Leg 129, Site 802: A First Deep-Sea Occurrence of Thaumasite. , 0, , .		5
138	Radon signature of CO2 flux constrains the depth of degassing: Furnas volcano (Azores, Portugal) versus Syabru-Bensi (Nepal Himalayas). Scientific Reports, 2022, 12, .	3.3	5
139	The evolution of carbon signatures carried by the Ganges-Brahmaputra river system: a source-to-sink perspective. , 0, , 353-372.		4
140	East Asian monsoon intensification promoted weathering of the magnesium-rich southern China upper crust and its global significance. Science China Earth Sciences, 2021, 64, 1155-1170.	5.2	4
141	Hydrogen Isotope Composition of Pore Waters and Interlayer Water in Sediments from the Central Western Pacific, Leg 129. , 0, , .		4
142	Transfer of the Sr isotopic signature of the Himalayas to the Bay of Bengal. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50, 951-960.	1.4	3
143	Turbulent mixing in the Amazon River: The isotopic memory of confluences. Earth and Planetary Science Letters, 290 (2010), pp. 37–43. Earth and Planetary Science Letters, 2011, 311, 448-450.	4.4	3
144	Organic Carbon Cycling During Himalayan Erosion: Processes, Fluxes and Consequences for the Global Carbon Cycle. , 2010, , 163-181.		3

#	Article	IF	CITATIONS
145	Behavior of osmium at the freshwater-saltwater interface based on Ganga derived sediments from the estuarine zone. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	2
146	Application de l'analyse isotopique par spectrométrie de masse et sonde ionique de l'oxygène des émeraudes naturelles. Analusis - European Journal of Analytical Chemistry, 1999, 27, 203-206.	0.4	2
147	Major Element and Sr Isotope Composition of Interstitial Waters in Sediments from Leg 129: The Role of Diagenetic Reactions. , 0, , .		2
148	Data Report: Summary of Geochemical Data for Leg 129 Igneous Rocks. , 0, , .		2
149	Site U1453. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	2
150	Site U1455. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	2
151	Site U1454. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	2
152	Formation temperatures of clays from the volcaniclastic series of Site 841 ODP: an oxygen isotopic record of a paleothermal flux into the Tonga forearc. Contributions To Mineralogy and Petrology, 1999, 134, 364-369.	3.1	1
153	High K and Ca Chemical Erosion Triggered by Physical Erosion in a Watershed of the High Himalaya of Nepal. Procedia Earth and Planetary Science, 2014, 10, 292-296.	0.6	1
154	Continental Erosion and Co2 Uptake. Inferences from the Himalayan System. Mineralogical Magazine, 1998, 62A, 466-467.	1.4	1
155	Large scale infiltration of fluids during regional metamorphism. H and C isotope evidence from central Nepal. Chemical Geology, 1988, 70, 160.	3.3	Ο
156	Reply to the Comment made by C. Gualtieri on "Turbulent mixing in the Amazon River: The isotopic memory of confluencesâ€; by J. Bouchez, E. Lajeunesse, J. Gaillardet, C. France-Lanord, P. Dutra-Maia and L. Maurice. Earth and Planetary Science Letters, 2011, 311, 451-452.	4.4	0
157	The record of climate and uplift in the palaeo-Ganga plain: A way to decipher the interactions between climate and tectonics. Himalayan Journal of Sciences, 2006, 2, 156-157.	0.3	Ο
158	Site U1449. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	0
159	Expedition 354 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	Ο
160	Expedition 354 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	0
161	Site U1449. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	0
162	Site U1450. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	0

#	Article	IF	CITATIONS
163	Site U1451. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	0
164	Site U1452. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	0
165	Site U1453. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	Ο
166	Site U1454. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	0
167	Site U1455. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	0