
Carlo Em Pucillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4728309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selected recent advances in understanding the role of human mast cells in health and disease. Journal of Allergy and Clinical Immunology, 2022, 149, 1833-1844.	2.9	26
2	Mast cells crosstalk with B cells in the gut and sustain IgA response in the inflamed intestine. European Journal of Immunology, 2021, 51, 445-458.	2.9	7
3	Repurposing of the Antiepileptic Drug Levetiracetam to Restrain Neuroendocrine Prostate Cancer and Inhibit Mast Cell Support to Adenocarcinoma. Frontiers in Immunology, 2021, 12, 622001.	4.8	6
4	Expansion of plasmablasts and loss of memory B cells in peripheral blood from COVIDâ€19 patients with pneumonia. European Journal of Immunology, 2020, 50, 1283-1294.	2.9	95
5	Crossroads between immune responses and physiological regulation: Metabolic control of resistance versus tolerance against disease. European Journal of Immunology, 2020, 50, 484-489.	2.9	3
6	Inhibition of APE1-endonuclease activity affects cell metabolism in colon cancer cells via a p53-dependent pathway. DNA Repair, 2019, 82, 102675.	2.8	31
7	ILâ€10â€producing BÂcells are characterized by a specific methylation signature. European Journal of Immunology, 2019, 49, 1213-1225.	2.9	19
8	Frontline Science: Mast cells regulate neutrophil homeostasis by influencing macrophage clearance activity. Journal of Leukocyte Biology, 2019, 105, 633-644.	3.3	7
9	Endonuclease and redox activities of human apurinic/apyrimidinic endonuclease 1 have distinctive and essential functions in IgA class switch recombination. Journal of Biological Chemistry, 2019, 294, 5198-5207.	3.4	16
10	Cross-Talk between Myeloid-Derived Suppressor Cells and Mast Cells Mediates Tumor-Specific Immunosuppression in Prostate Cancer. Cancer Immunology Research, 2018, 6, 552-565.	3.4	44
11	Mast cells, basophils and eosinophils: From allergy to cancer. Seminars in Immunology, 2018, 35, 29-34.	5.6	66
12	ls it time for a new classification of mast cells? What do we know about mast cell heterogeneity?. Immunological Reviews, 2018, 282, 35-46.	6.0	77
13	What we know (and don't know) about the biology and functions of mast cells and basophils. Immunological Reviews, 2018, 282, 5-7.	6.0	8
14	Mast Cells Respond to Candida albicans Infections and Modulate Macrophages Phagocytosis of the Fungus. Frontiers in Immunology, 2018, 9, 2829.	4.8	21
15	IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut. Cell Reports, 2018, 23, 1767-1778.	6.4	50
16	Mast cells contribute to autoimmune diabetes by releasing interleukin-6 and failing to acquire a tolerogenic IL-10+ phenotype. Clinical Immunology, 2017, 178, 29-38.	3.2	19
17	A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nature Communications, 2017, 8, 14017.	12.8	110
18	Rheostatic Functions of Mast Cells in the Control of Innate and Adaptive Immune Responses. Trends in Immunology, 2017, 38, 648-656.	6.8	66

#	Article	IF	CITATIONS
19	Reciprocal influence of B cells and tumor macro and microenvironments in the <i>Apc^{Min/+}</i> model of colorectal cancer. OncoImmunology, 2017, 6, e1336593.	4.6	8
20	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
21	Message in a bottle from the tumor microenvironment: tumor-educated DCs instruct B cells to participate in immunosuppression. Cellular and Molecular Immunology, 2017, 14, 730-732.	10.5	8
22	Mast cells are associated with the onset and progression of celiac disease. Journal of Allergy and Clinical Immunology, 2017, 139, 1266-1274.e1.	2.9	39
23	Deciphering new mechanisms on Tâ€cell costimulation by human mast cells. European Journal of Immunology, 2016, 46, 1105-1108.	2.9	3
24	Co-Occurrence of Chronic Spontaneous Urticaria with Immunoglobulin A Deficiency and Autoimmune Diseases. International Archives of Allergy and Immunology, 2016, 169, 130-134.	2.1	9
25	Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells. European Journal of Pharmacology, 2016, 778, 84-89.	3.5	33
26	Exosomes: Tiny Clues for Mast Cell Communication. Frontiers in Immunology, 2015, 6, 73.	4.8	11
27	Mast cell/MDSC a liaison immunosuppressive for tumor microenvironment. Oncolmmunology, 2015, 4, e1001232.	4.6	25
28	Allergic responses and aryl hydrocarbon receptor novel pathway of mast cell activation. Molecular Immunology, 2015, 63, 69-73.	2.2	13
29	The Role of Mast Cells in Molding the Tumor Microenvironment. Cancer Microenvironment, 2015, 8, 167-176.	3.1	62
30	Mast Cells Boost Myeloid-Derived Suppressor Cell Activity and Contribute to the Development of Tumor-Favoring Microenvironment. Cancer Immunology Research, 2015, 3, 85-95.	3.4	59
31	Mast cell activation: A complex interplay of positive and negative signaling pathways. European Journal of Immunology, 2014, 44, 2558-2566.	2.9	122
32	IL-10 production by B cells is differentially regulated by immune-mediated and infectious stimuli and requires p38 activation. Molecular Immunology, 2014, 62, 266-276.	2.2	35
33	Mast Cells Control the Expansion and Differentiation of IL-10–Competent B Cells. Journal of Immunology, 2014, 193, 4568-4579.	0.8	33
34	Bone marrow stroma CD40 expression correlates with inflammatory mast cell infiltration and disease progression in splenic marginal zone lymphoma. Blood, 2014, 123, 1836-1849.	1.4	37
35	Modulation of FcεRI-Dependent Mast Cell Response by OX40L. Methods in Molecular Biology, 2014, 1155, 23-30.	0.9	2
36	Use of Cocultures for the Study of Cellular Interactions Influencing B Cell Regulatory Functions. Methods in Molecular Biology, 2014, 1190, 163-179.	0.9	0

#	Article	IF	CITATIONS
37	Oxidative Activity of Ammonium Persulfate Salt on Mast Cells and Basophils: Implication in Hairdressers' Asthma. International Archives of Allergy and Immunology, 2013, 160, 409-419.	2.1	24
38	The Aryl Hydrocarbon Receptor Modulates Acute and Late Mast Cell Responses. Journal of Immunology, 2012, 189, 120-127.	0.8	70
39	Mast Cell: An Emerging Partner in Immune Interaction. Frontiers in Immunology, 2012, 3, 120.	4.8	114
40	New roots for IgE-producing B cells. Cellular and Molecular Immunology, 2012, 9, 321-321.	10.5	1
41	Modulation of FcεRI-dependent mast cell response by OX40L via Fyn, PI3K, and RhoA. Journal of Allergy and Clinical Immunology, 2012, 130, 751-760.e2.	2.9	23
42	BCR-ABL rearrangement and HLA antigens: a possible link to leukemia pathogenesis and immunotherapy. Revista Brasileira De Hematologia E Hemoterapia, 2012, 34, 323-324.	0.7	2
43	Mast cells are critically involved in serum-mediated vascular leakage in chronic urticaria beyond high-affinity IgE receptor stimulation. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 1538-1545.	5.7	80
44	Singleâ€cell dynamics of mast cell–CD4 ⁺ CD25 ⁺ regulatory T cell interactions. European Journal of Immunology, 2011, 41, 1872-1882.	2.9	29
45	Technical Advance: Soluble OX40 molecule mimics regulatory T cell modulatory activity on FcɛRI-dependent mast cell degranulation. Journal of Leukocyte Biology, 2011, 90, 831-838.	3.3	12
46	High-performance metabolic marker assessment in breast cancer tissue by mass spectrometry. Clinical Chemistry and Laboratory Medicine, 2011, 49, 317-24.	2.3	12
47	Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA-secreting plasma cells. Blood, 2010, 115, 2810-2817.	1.4	113
48	Regulatory B cells: Evidence, developmental origin and population diversity. Molecular Immunology, 2010, 48, 1-8.	2.2	70
49	Exploring a regulatory role for mast cells: â€~MCregs'?. Trends in Immunology, 2010, 31, 97-102.	6.8	62
50	Mast Cells and Th17 Cells Contribute to the Lymphoma-Associated Pro-Inflammatory Microenvironment of Angioimmunoblastic T-Cell Lymphoma. American Journal of Pathology, 2010, 177, 792-802.	3.8	82
51	Gamma-delta T-cell lymphomas. Nature Reviews Clinical Oncology, 2009, 6, 707-717.	27.6	152
52	C7 is expressed on endothelial cells as a trap for the assembling terminal complement complex and may exert anti-inflammatory function. Blood, 2009, 113, 3640-3648.	1.4	44
53	Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood, 2009, 114, 2639-2648.	1.4	184
54	The Vibrio cholerae cytolysin promotes activation of mast cell (T helper 2) cytokine production. Cellular Microbiology, 2008, 10, 899-907.	2.1	8

#	Article	IF	CITATIONS
55	The Controlling Roles of Trp60 and Trp95 in β2-Microglobulin Function, Folding and Amyloid Aggregation Properties. Journal of Molecular Biology, 2008, 378, 887-897.	4.2	82
56	Oxidative microenvironment exerts an opposite regulatory effect on cytokine production by Th1 and Th2 cells. Molecular Immunology, 2008, 45, 58-64.	2.2	84
57	TRAF2 and p38 are involved in B cells CD40-mediated APE/Ref-1 nuclear translocation: A novel pathway in B cell activation. Molecular Immunology, 2008, 45, 76-86.	2.2	12
58	APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation. Molecular Immunology, 2008, 45, 3731-3739.	2.2	11
59	CD4+CD25+ Regulatory T Cells Suppress Mast Cell Degranulation and Allergic Responses through OX40-OX40L Interaction. Immunity, 2008, 29, 771-781.	14.3	333
60	The second AT-hook of the architectural transcription factor HMGA2 is determinant for nuclear localization and function. Nucleic Acids Research, 2007, 35, 1751-1760.	14.5	46
61	Selective Activation of Fyn/PI3K and p38 MAPK Regulates IL-4 Production in BMMC under Nontoxic Stress Condition. Journal of Immunology, 2007, 178, 2549-2555.	0.8	75
62	Outside inside signalling in CD40-mediated B cell activation. Journal of Biological Regulators and Homeostatic Agents, 2007, 21, 49-62.	0.7	17
63	Surface-antigen expression profiling (SEP) in B-cell chronic lymphocytic leukemia (B-CLL): Identification of markers with prognostic relevance. Journal of Immunological Methods, 2005, 305, 20-32.	1.4	17
64	Signature of B-CLL with different prognosis by Shrunken centroids of surface antigen expression profiling. Journal of Cellular Physiology, 2005, 204, 113-123.	4.1	30
65	Determination of protein phosphorylation sites by mass spectrometry: a novel electrospray-based method. Rapid Communications in Mass Spectrometry, 2005, 19, 3343-3348.	1.5	9
66	CD40 Stimulation Induces Pax5/BSAP and EBF Activation through a APE/Ref-1-dependent Redox Mechanism. Journal of Biological Chemistry, 2004, 279, 1777-1786.	3.4	41
67	The mast cell: an antenna of the microenvironment that directs the immune response. Journal of Leukocyte Biology, 2004, 75, 579-585.	3.3	74
68	Analysis of IgVH gene mutations in BÂcell chronic lymphocytic leukaemia according to antigen-driven selection identifies subgroups with different prognosis and usage of the canonical somatic hypermutation machinery. British Journal of Haematology, 2004, 126, 29-42.	2.5	54
69	Targeting of HLA-DR molecules transduces agonistic functional signals in cutaneous melanoma. Journal of Cellular Physiology, 2004, 200, 272-276.	4.1	7
70	An Unprecedented Catalytic Motif Revealed in the Model Structure of Amide Hydrolyzing Antibody 312d6. ChemBioChem, 2004, 5, 129-131.	2.6	4
71	Mutational Status of IgVH Genes Consistent with Antigen-Driven Selection but Not Percent of Mutations Has Prognostic Impact in B-Cell Chronic Lymphocytic Leukemia. Clinical Lymphoma and Myeloma, 2004, 5, 123-126.	2.1	9
72	Error-Prone DNA Polymerases iota and beta Are Over-Expressed in B-CLL Cells: Correlation with Specific IgVH Point-Mutations and Implication for the Pathogenesis of Intraclonal IgVH Diversification Blood, 2004, 104, 950-950.	1.4	1

#	Article	IF	CITATIONS
73	Identification of Eight Surface Molecules with Survival Predictive Power in B Cell Chronic Lymphocytic Leukemia (B-CLL): A Proposal for a Scoring System Blood, 2004, 104, 2797-2797.	1.4	0
74	Oxidative stress stimulates IL-4 and IL-6 production in mast cells by an APE/Ref-1-dependent pathway. European Journal of Immunology, 2003, 33, 2168-2177.	2.9	85
75	Increase in Therapeutic Index of Doxorubicin and Vinblastine by Aptameric Oligonucleotide in Human T Lymphoblastic Drug-Sensitive and Multidrug-Resistant Cells. Oligonucleotides, 2002, 12, 247-255.	4.3	10
76	H2O2 induces translocation of APE/Ref-1 to mitochondria in the Raji B-cell line. Journal of Cellular Physiology, 2002, 193, 180-186.	4.1	94
77	Mitochondrial localization of APE/Ref-1 in thyroid cells. Mutation Research DNA Repair, 2001, 485, 143-152.	3.7	75
78	Monoclonal antibody detection of naphthalene dioxygenase from Pseudomonas aeruginosa 2NR. Letters in Applied Microbiology, 2000, 31, 313-318.	2.2	3
79	An environment to nucleus' signaling system operates in B lymphocytes: redox status modulates BSAP/Pax-5 activation through Ref-1 nuclear translocation. Nucleic Acids Research, 2000, 28, 1099-1105.	14.5	97
80	TSH controls Ref-1 nuclear translocation in thyroid cells. Journal of Molecular Endocrinology, 2000, 24, 383-390.	2.5	59
81	Adhesion to fibronectin promotes the activation of the p125FAK /Zap-70 complex in human T cells. Immunology, 1999, 98, 564-568.	4.4	14
82	The overlooked ?nonclassical? functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells. Journal of Cellular Physiology, 1999, 179, 251-256.	4.1	19
83	Comparative stability analysis of the thyroid transcription factor 1 and Antennapedia homeodomains: evidence for residue 54 in controlling the structural stability of the recognition helix. International Journal of Biochemistry and Cell Biology, 1999, 31, 1339-1353.	2.8	5
84	Structural defects of a Pax8 mutant that give rise to congenital hypothyroidism. Biochemical Journal, 1999, 341, 89.	3.7	7
85	The overlooked "nonclassical―functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells. Journal of Cellular Physiology, 1999, 179, 251-256.	4.1	1
86	All-trans retinoic acid (ATRA) potentiates the in vitro inhibitory effects of IFN-alpha in parental (32D) and p210-bcr/abl transfected (LG7) murine myeloid cell lines. Haematologica, 1999, 84, 955-7.	3.5	0
87	Redox Potential Controls the Structure and DNA Binding Activity of the Paired Domain. Journal of Biological Chemistry, 1998, 273, 25062-25072.	3.4	95
88	Fibronectin Binding Promotes a PKC-Dependent Modulation of NF-κB in Human T Cells. Biochemical and Biophysical Research Communications, 1998, 243, 732-737.	2.1	20
89	Ref-1 Controls Pax-8 DNA-Binding Activity. Biochemical and Biophysical Research Communications, 1998, 252, 178-183.	2.1	85
90	Structural and functional properties of the N transcriptional activation domain of thyroid transcription factor-1: similarities with the acidic activation domains. Biochemical Journal, 1998, 329, 395-403.	3.7	34

#	Article	IF	CITATIONS
91	BIPHASIC CONTROL OF NF-ήB ACTIVATION INDUCED BY THE TRIGGERING OF HLA-DR ANTIGENS EXPRESSED ON B CELLS. Cytokine, 1997, 9, 295-299.	3.2	4
92	Functional interference between contacting amino acids of homeodomains. FEBS Letters, 1997, 407, 320-324.	2.8	18
93	Triggering of Target of an Antiproliferative Antibodyâ€1 (TAPAâ€1/CD81) Upâ€Regulates the Release of Tumour Necrosis Factorâ€Î± by the EBVâ€B Lymphoblastoid Cell Line JY. Scandinavian Journal of Immunology, 1996, 43, 361-373.	2.7	21
94	In the TTF-1 homeodomain the contribution of several amino acids to DNA recognition depends on the bound sequence. Nucleic Acids Research, 1996, 24, 3283-3288.	14.5	7
95	Techniques for Monitoring Cell Cycle Phases. , 1996, , 46-52.		1
96	Superantigenic characteristics of mouse mammary tumor viruses play a critical role in susceptibility to infection in mice. Immunologic Research, 1995, 14, 58-68.	2.9	1
97	Definition of the DNA-Binding Specificity of TTF-1 Homeodomain by Chromatographic Selection of Binding Sequences. Biochemical and Biophysical Research Communications, 1995, 213, 781-788.	2.1	17
98	Expression, Purification and Functional Characterization of a Kunitz-Type Module from Chicken Type VI Collagen. Biochemical and Biophysical Research Communications, 1995, 215, 1050-1055.	2.1	2
99	Analysis of thymic subpopulations expressing the activation antigen GL7. Expression, genetics, and function. Journal of Immunology, 1995, 155, 4575-81.	0.8	9
100	Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function Journal of Experimental Medicine, 1994, 180, 631-640.	8.5	649
101	Expression of a MHC class II transgene determines both superantigenicity and susceptibility to mammary tumor virus infection Journal of Experimental Medicine, 1993, 178, 1441-1445.	8.5	31
102	Interactions of promonocytic U937 cells with proteins of the extracellular matrix. Immunology, 1993, 80, 248-52.	4.4	13
103	Cross-linking of HLA class II antigens modulates the release of tumor necrosis factor-alpha by the EBV-B lymphoblastoid cell line JY. Journal of Immunology, 1993, 151, 5115-22.	0.8	35
104	Regulation of the Expression of the Low-Affinity IgE Receptor (FcεRII) in the Human Monocyte-Like Cell Line U-937 by Phorbol Esters and IgE. International Archives of Allergy and Immunology, 1990, 93, 330-337.	2.1	3
105	Studies with a monoclonal antibody to the β subunit of the receptor with high affinity for immunoglobulin E. Molecular Immunology, 1988, 25, 647-661.	2.2	101