Alessandra Pierani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4728245/publications.pdf

Version: 2024-02-01

52 papers 6,243 citations

30 h-index 53 g-index

55 all docs 55 docs citations

55 times ranked 6069 citing authors

#	Article	IF	CITATIONS
1	A Homeodomain Protein Code Specifies Progenitor Cell Identity and Neuronal Fate in the Ventral Neural Tube. Cell, 2000, 101, 435-445.	28.9	1,065
2	Requirement for $ROR\hat{I}^3$ in Thymocyte Survival and Lymphoid Organ Development. Science, 2000, 288, 2369-2373.	12.6	676
3	Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nature Neuroscience, 2005, 8, 1002-1012.	14.8	422
4	Genetic Identification of Spinal Interneurons that Coordinate Left-Right Locomotor Activity Necessary for Walking Movements. Neuron, 2004, 42, 375-386.	8.1	383
5	The Homeodomain Factor Lbx1 Distinguishes Two Major Programs of Neuronal Differentiation in the Dorsal Spinal Cord. Neuron, 2002, 34, 551-562.	8.1	343
6	A Sonic Hedgehog–Independent, Retinoid-Activated Pathway of Neurogenesis in the Ventral Spinal Cord. Cell, 1999, 97, 903-915.	28.9	322
7	Dual-mode operation of neuronal networks involved in left–right alternation. Nature, 2013, 500, 85-88.	27.8	313
8	The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons. Journal of Neuroscience, 2009, 29, 9380-9389.	3.6	239
9	Different Levels of Repressor Activity Assign Redundant and Specific Roles to Nkx6 Genes in Motor Neuron and Interneuron Specification. Neuron, 2001, 31, 743-755.	8.1	231
10	Hindbrain interneurons and axon guidance signaling critical for breathing. Nature Neuroscience, 2010, 13, 1066-1074.	14.8	206
11	Dynamic Assignment and Maintenance of Positional Identity in the Ventral Neural Tube by the Morphogen Sonic Hedgehog. PLoS Biology, 2010, 8, e1000382.	5.6	184
12	A Wide Diversity of Cortical GABAergic Interneurons Derives from the Embryonic Preoptic Area. Journal of Neuroscience, 2011, 31, 16570-16580.	3.6	156
13	Developmental Origin of the Neuronal Subtypes That Comprise the Amygdalar Fear Circuit in the Mouse. Journal of Neuroscience, 2010, 30, 6944-6953.	3.6	127
14	Origin and Molecular Specification of Globus Pallidus Neurons. Journal of Neuroscience, 2010, 30, 2824-2834.	3.6	117
15	Purified octamer binding transcription factors stimulate RNA polymerase III-mediated transcription of the 7SK RNA gene. Cell, 1989, 59, 1071-1080.	28.9	115
16	A Novel Role for Dbx1-Derived Cajal-Retzius Cells in Early Regionalization of the Cerebral Cortical Neuroepithelium. PLoS Biology, 2010, 8, e1000440.	5.6	115
17	Identification of Multiple Subsets of Ventral Interneurons and Differential Distribution along the Rostrocaudal Axis of the Developing Spinal Cord. PLoS ONE, 2013, 8, e70325.	2.5	84
18	A Novel Transient Glutamatergic Population Migrating from the Pallial–Subpallial Boundary Contributes to Neocortical Development. Journal of Neuroscience, 2010, 30, 10563-10574.	3.6	73

#	Article	IF	Citations
19	Patterning the cerebral cortex: traveling with morphogens. Current Opinion in Genetics and Development, 2010, 20, 408-415.	3.3	70
20	Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajalâ€Retzius cells. Developmental Neurobiology, 2016, 76, 847-881.	3.0	68
21	Lhx2 Regulates the Development of the Forebrain Hem System. Cerebral Cortex, 2014, 24, 1361-1372.	2.9	67
22	Sp8 and COUP-TF1 Reciprocally Regulate Patterning and Fgf Signaling in Cortical Progenitors. Cerebral Cortex, 2014, 24, 1409-1421.	2.9	57
23	Migration Speed of Cajal-Retzius Cells Modulated by Vesicular Trafficking Controls the Size of Higher-Order Cortical Areas. Current Biology, 2015, 25, 2466-2478.	3.9	54
24	A Mammalian Conserved Element Derived from SINE Displays Enhancer Properties Recapitulating Satb2 Expression in Early-Born Callosal Projection Neurons. PLoS ONE, 2011, 6, e28497.	2.5	49
25	Radial derivatives of the mouse ventral pallium traced with Dbx1-LacZ reporters. Journal of Chemical Neuroanatomy, 2016, 75, 2-19.	2.1	47
26	Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells. Development (Cambridge), 2010, 137, 293-302.	2.5	45
27	<i>Prdm12</i> specifies V1 interneurons through cross-repressive interactions with <i>Dbx1</i> and <i>Nkx6</i> genes in <i>Xenopus</i> Development (Cambridge), 2015, 142, 3416-3428.	2.5	45
28	Reallocation of Olfactory Cajal-Retzius Cells Shapes Neocortex Architecture. Neuron, 2016, 92, 435-448.	8.1	43
29	Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis. Nature Communications, 2019, 10, 4249.	12.8	42
30	Cerebral cortex development: From progenitors patterning to neocortical size during evolution. Development Growth and Differentiation, 2009, 51, 325-342.	1.5	38
31	Specification of Select Hypothalamic Circuits and Innate Behaviors by the Embryonic Patterning Gene Dbx1. Neuron, 2015, 86, 403-416.	8.1	37
32	Targeted Inactivation of Bax Reveals a Subtype-Specific Mechanism of Cajal-Retzius Neuron Death in the Postnatal Cerebral Cortex. Cell Reports, 2016, 17, 3133-3141.	6.4	34
33	The multiple facets of Cajal-Retzius neurons. Development (Cambridge), 2021, 148, .	2.5	33
34	Single-cell transcriptomics of the early developing mouse cerebral cortex disentangle the spatial and temporal components of neuronal fate acquisition. Development (Cambridge), 2021, 148, .	2.5	32
35	Activity-dependent death of transient Cajal-Retzius neurons is required for functional cortical wiring. ELife, 2019, 8, .	6.0	32
36	Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nature Communications, 2015, 6, 6366.	12.8	31

#	Article	IF	Citations
37	Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development (Cambridge), 2014, 141, 377-388.	2.5	25
38	Cortical developmental death: selected to survive or fated to die. Current Opinion in Neurobiology, 2018, 53, 35-42.	4.2	25
39	Neuronal fate specification by the Dbx1 transcription factor is linked to the evolutionary acquisition of a novel functional domain. EvoDevo, 2016, 7 , 18 .	3.2	23
40	QR1, a retina-specific gene, encodes an extracellular matrix protein exclusively expressed during neural retina differentiation. Mechanisms of Development, 1996, 54, 237-250.	1.7	19
41	Dbx1-Expressing Cells Are Necessary for the Survival of the Mammalian Anterior Neural and Craniofacial Structures. PLoS ONE, 2011, 6, e19367.	2.5	19
42	Development and evolution of cortical fields. Neuroscience Research, 2014, 86, 66-76.	1.9	17
43	CXCR7 Receptor Controls the Maintenance of Subpial Positioning of Cajal–Retzius Cells. Cerebral Cortex, 2015, 25, 3446-3457.	2.9	17
44	Kremen1-induced cell death is regulated by homo- and heterodimerization. Cell Death Discovery, 2019, 5, 91.	4.7	16
45	Transcription factor OTF-1 interacts with two distinct DNA elements in the A.gammaglobin gene promoter. Biochemistry, 1991, 30, 2961-2967.	2.5	15
46	Pax3- and Pax7-mediated Dbx1 regulation orchestrates the patterning of intermediate spinal interneurons. Developmental Biology, 2017, 432, 24-33.	2.0	14
47	Wiring of higher-order cortical areas: Spatiotemporal development of cortical hierarchy. Seminars in Cell and Developmental Biology, 2021, 118, 35-49.	5.0	14
48	Enhanced Abventricular Proliferation Compensates Cell Death in the Embryonic Cerebral Cortex. Cerebral Cortex, 2017, 27, 4701-4718.	2.9	13
49	How Do Electric Fields Coordinate Neuronal Migration and Maturation in the Developing Cortex?. Frontiers in Cell and Developmental Biology, 2020, 8, 580657.	3.7	12
50	Evolutionary Gain of Dbx1 Expression Drives Subplate Identity in the Cerebral Cortex. Cell Reports, 2019, 29, 645-658.e5.	6.4	11
51	Specific contribution of neurons from the Dbx1 lineage to the piriform cortex. Scientific Reports, $2021, 11, 8349.$	3.3	3
52	Editorial: Mechanisms of Neuronal Migration during Corticogenesis. Frontiers in Neuroscience, 2016, 10, 172.	2.8	2