
Jonathan S Lindsey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4728116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions. Journal of Organic Chemistry, 1987, 52, 827-836.	3.2	1,362
2	Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices. Accounts of Chemical Research, 2002, 35, 57-69.	15.6	834
3	Investigation of the synthesis of ortho-substituted tetraphenylporphyrins. Journal of Organic Chemistry, 1989, 54, 828-836.	3.2	687
4	PhotochemCADâ€â€: A Computer-Aided Design and Research Tool in Photochemistry. Photochemistry and Photobiology, 1998, 68, 141.	2.5	620
5	PhotochemCAD‡: A Computerâ€Aided Design and Research Tool in Photochemistry. Photochemistry and Photobiology, 1998, 68, 141-142.	2.5	593
6	One-flask synthesis of meso-substituted dipyrromethanes and their application in the synthesis of trans-substituted porphyrin building blocks. Tetrahedron, 1994, 50, 11427-11440.	1.9	521
7	Molecular Memories That Survive Silicon Device Processing and Real-World Operation. Science, 2003, 302, 1543-1545.	12.6	502
8	Refined Synthesis of 5-Substituted Dipyrromethanes. Journal of Organic Chemistry, 1999, 64, 1391-1396.	3.2	454
9	Design, Synthesis, and Photodynamics of Light-Harvesting Arrays Comprised of a Porphyrin and One, Two, or Eight Boron-Dipyrrin Accessory Pigments. Journal of the American Chemical Society, 1998, 120, 10001-10017.	13.7	428
10	Structural Control of the Photodynamics of Boronâ^'Dipyrrin Complexes. Journal of Physical Chemistry B, 2005, 109, 20433-20443.	2.6	375
11	Molecular Optoelectronic Gates. Journal of the American Chemical Society, 1996, 118, 3996-3997.	13.7	357
12	An Artificial Photosynthetic Antenna-Reaction Center Complex. Journal of the American Chemical Society, 1999, 121, 8604-8614.	13.7	336
13	Soluble Synthetic Multiporphyrin Arrays. 2. Photodynamics of Energy-Transfer Processes. Journal of the American Chemical Society, 1996, 118, 11181-11193.	13.7	310
14	Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in Photochem <scp>CAD</scp> . Photochemistry and Photobiology, 2018, 94, 290-327.	2.5	306
15	Synthetic Routes to <i>meso</i> -Patterned Porphyrins. Accounts of Chemical Research, 2010, 43, 300-311.	15.6	302
16	Investigation of Conditions Giving Minimal Scrambling in the Synthesis oftrans-Porphyrins from Dipyrromethanes and Aldehydes. Journal of Organic Chemistry, 1999, 64, 2864-2872.	3.2	300
17	Synthesis of Ethyne-Linked or Butadiyne-Linked Porphyrin Arrays Using Mild, Copper-Free, Pd-Mediated Coupling Reactions. Journal of Organic Chemistry, 1995, 60, 5266-5273.	3.2	297
18	A Scalable Synthesis of Meso-Substituted Dipyrromethanes. Organic Process Research and Development 2003, 7, 799-812	2.7	284

#	Article	IF	CITATIONS
19	Building-block synthesis of porphyrin light-harvesting arrays. Journal of the American Chemical Society, 1993, 115, 7519-7520.	13.7	275
20	Porphyrin building blocks for modular construction of bioorganic model systems. Tetrahedron, 1994, 50, 8941-8968.	1.9	272
21	Soluble Synthetic Multiporphyrin Arrays. 1. Modular Design and Synthesis. Journal of the American Chemical Society, 1996, 118, 11166-11180.	13.7	268
22	Rational Syntheses of Porphyrins Bearing up to Four Different Meso Substituents. Journal of Organic Chemistry, 2000, 65, 7323-7344.	3.2	253
23	Synthetic Chlorins, Possible Surrogates for Chlorophylls, Prepared by Derivatization of Porphyrins. Chemical Reviews, 2017, 117, 344-535.	47.7	250
24	Template-Directed Synthesis, Excited-State Photodynamics, and Electronic Communication in a Hexameric Wheel of Porphyrins. Journal of the American Chemical Society, 1999, 121, 8927-8940.	13.7	246
25	Effects of Orbital Ordering on Electronic Communication in Multiporphyrin Arrays. Journal of the American Chemical Society, 1997, 119, 11191-11201.	13.7	224
26	Excited-State Energy-Transfer Dynamics in Self-Assembled Triads Composed of Two Porphyrins and an Intervening Bis(dipyrrinato)metal Complex. Inorganic Chemistry, 2003, 42, 6629-6647.	4.0	214
27	Molecules for Charge-Based Information Storage. Accounts of Chemical Research, 2011, 44, 638-650.	15.6	207
28	An Efficient One-Flask Synthesis of N-Confused Tetraphenylporphyrin. Organic Letters, 1999, 1, 1455-1458.	4.6	206
29	Measurements of Electron-Transfer Rates of Charge-Storage Molecular Monolayers on Si(100). Toward Hybrid Molecular/Semiconductor Information Storage Devices. Journal of the American Chemical Society, 2003, 125, 505-517.	13.7	204
30	Structural Control of the Excited-State Dynamics of Bis(dipyrrinato)zinc Complexes:Â Self-Assembling Chromophores for Light-Harvesting Architectures. Journal of the American Chemical Society, 2004, 126, 2664-2665.	13.7	204
31	PhotochemCAD 2: A Refined Program with Accompanying Spectral Databases for Photochemical Calculations¶. Photochemistry and Photobiology, 2005, 81, 212.	2.5	202
32	Efficient Energy Transfer and Electron Transfer in an Artificial Photosynthetic Antennaâ^'Reaction Center Complexâ€. Journal of Physical Chemistry A, 2002, 106, 2036-2048.	2.5	175
33	Investigation of MALDI-TOF Mass Spectrometry of Diverse Synthetic Metalloporphyrins, Phthalocyanines and Multiporphyrin Arrays. Journal of Porphyrins and Phthalocyanines, 1999, 03, 283-291.	0.8	168
34	Energy-Transfer Modeling for the Rational Design of Multiporphyrin Light-Harvesting Arrays. Journal of Physical Chemistry B, 1998, 102, 4209-4216.	2.6	158
35	A Simple Method for Preparing Magnesium Porphyrins. Inorganic Chemistry, 1995, 34, 1063-1069.	4.0	152
36	<i>De Novo</i> Synthesis of Gem-Dialkyl Chlorophyll Analogues for Probing and Emulating Our Green World. Chemical Reviews, 2015, 115, 6534-6620.	47.7	143

3

#	Article	IF	CITATIONS
37	Structural Control of Photoinduced Energy Transfer between Adjacent and Distant Sites in Multiporphyrin Arrays. Journal of the American Chemical Society, 2000, 122, 7579-7591.	13.7	141
38	Synthesis of "Porphyrin-Linker-Thiol―Molecules with Diverse Linkers for Studies of Molecular-Based Information Storage. Journal of Organic Chemistry, 2000, 65, 7345-7355.	3.2	139
39	De Novo Synthesis of Stable Tetrahydroporphyrinic Macrocycles:Â Bacteriochlorins and a Tetradehydrocorrin. Journal of Organic Chemistry, 2005, 70, 5475-5486.	3.2	137
40	Stable Synthetic Cationic Bacteriochlorins as Selective Antimicrobial Photosensitizers. Antimicrobial Agents and Chemotherapy, 2010, 54, 3834-3841.	3.2	136
41	Design and Synthesis of Porphyrin-Based Optoelectronic Gates. Chemistry of Materials, 2001, 13, 1023-1034.	6.7	135
42	Synthesis and Photophysical Properties of Light-Harvesting Arrays Comprised of a Porphyrin Bearing Multiple Perylene-Monoimide Accessory Pigments. Journal of Organic Chemistry, 2002, 67, 6519-6534.	3.2	134
43	Investigation of a Synthesis of meso-Porphyrins Employing High Concentration Conditions and an Electron Transport Chain for Aerobic Oxidation. Journal of Organic Chemistry, 1994, 59, 579-587.	3.2	130
44	A Tightly Coupled Linear Array of Perylene, Bis(Porphyrin), and Phthalocyanine Units that Functions as a Photoinduced Energy-Transfer Cascade. Journal of Organic Chemistry, 2000, 65, 6634-6649.	3.2	125
45	Accessing the near-infrared spectral region with stable, synthetic, wavelength-tunable bacteriochlorins. New Journal of Chemistry, 2008, 32, 947.	2.8	120
46	Expanded Scope of Synthetic Bacteriochlorins via Improved Acid Catalysis Conditions and Diverse Dihydrodipyrrin-Acetals. Journal of Organic Chemistry, 2010, 75, 1016-1039.	3.2	119
47	Diverse Redox-Active Molecules Bearing Identical Thiol-Terminated Tripodal Tethers for Studies of Molecular Information Storage. Journal of Organic Chemistry, 2004, 69, 1461-1469.	3.2	114
48	Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: Role of molecular charge, central metal and hydroxyl radical production. Cancer Letters, 2009, 282, 63-76.	7.2	114
49	Ground and Excited State Electronic Properties of Halogenated Tetraarylporphyrins: Tuning the Building Blocks for Porphyrin-based Photonic Devices. Journal of Porphyrins and Phthalocyanines, 1999, 03, 117-147.	0.8	112
50	Rational Synthesis of Meso-Substituted Chlorin Building Blocks. Journal of Organic Chemistry, 2000, 65, 3160-3172.	3.2	111
51	Efficient Synthesis of Monoacyl Dipyrromethanes and Their Use in the Preparation of Sterically Unhinderedtrans-Porphyrins. Journal of Organic Chemistry, 2000, 65, 1084-1092.	3.2	111
52	Synthesis and Excited-State Photodynamics of Peryleneâ^'Porphyrin Dyads. 1. Parallel Energy and Charge Transfer via a Diphenylethyne Linker. Journal of Physical Chemistry B, 2001, 105, 8237-8248.	2.6	110
53	Thiol-Derivatized Porphyrins for Attachment to Electroactive Surfaces. Journal of Organic Chemistry, 1999, 64, 8635-8647.	3.2	108
54	Excited-State Energy Transfer and Ground-State Hole/Electron Hopping inp-Phenylene-Linked Porphyrin Dimers. Journal of Physical Chemistry B, 1998, 102, 9426-9436.	2.6	107

#	Article	IF	CITATIONS
55	Effects of central metal ion (Mg, Zn) and solvent on singlet excited-state energy flow in porphyrin-based nanostructures. Journal of Materials Chemistry, 1997, 7, 1245-1262.	6.7	105
56	Molecular approach toward information storage based on the redox properties of porphyrins in self-assembled monolayers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2359.	1.6	105
57	Beneficial effects of salts on an acid-catalyzed condensation leading to porphyrin formation. Tetrahedron, 1997, 53, 12339-12360.	1.9	103
58	Interplay of Orbital Tuning and Linker Location in Controlling Electronic Communication in Porphyrin Arrays. Journal of the American Chemical Society, 1999, 121, 4008-4018.	13.7	102
59	Design and synthesis of manganese porphyrins with tailored lipophilicity: Investigation of redox properties and superoxide dismutase activity. Bioorganic and Medicinal Chemistry, 2007, 15, 7066-7086.	3.0	100
60	Synthesis of Thiol-Derivatized Ferroceneâ^'Porphyrins for Studies of Multibit Information Storage. Journal of Organic Chemistry, 2000, 65, 7356-7362.	3.2	99
61	Capacitance and conductance characterization of ferrocene-containing self-assembled monolayers on silicon surfaces for memory applications. Applied Physics Letters, 2002, 81, 1494-1496.	3.3	98
62	Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells. Journal of Physical Chemistry C, 2007, 111, 15464-15478.	3.1	98
63	Investigation and Refinement of Palladium-Coupling Conditions for the Synthesis of Diarylethyne-Linked Multiporphyrin Arrays. Chemistry of Materials, 1999, 11, 2974-2983.	6.7	96
64	Studies related to the design and synthesis of a molecular octal counter. Journal of Materials Chemistry, 2001, 11, 1162-1180.	6.7	95
65	Rational Synthesis of Trans-Substituted Porphyrin Building Blocks Containing One Sulfur or Oxygen Atom in Place of Nitrogen at a Designated Site. Journal of Organic Chemistry, 1999, 64, 7890-7901.	3.2	94
66	In Vitro Photodynamic Therapy and Quantitative Structureâ^'Activity Relationship Studies with Stable Synthetic Near-Infrared-Absorbing Bacteriochlorin Photosensitizers. Journal of Medicinal Chemistry, 2010, 53, 4018-4027.	6.4	93
67	Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments. Journal of Physical Chemistry B, 2011, 115, 10801-10816.	2.6	93
68	Synthetic Chlorins Bearing Auxochromes at the 3- and 13-Positions. Journal of Organic Chemistry, 2006, 71, 4092-4102.	3.2	92
69	Photophysical characterization of imidazolium-substituted Pd(II), In(III), and Zn(II) porphyrins as photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 346-355.	3.9	91
70	Synthetic approaches to regioisomerically pure porphyrins bearing four different meso-substituents. Tetrahedron, 1995, 51, 11645-11672.	1.9	90
71	Rational Synthesis of Meso-Substituted Porphyrins Bearing One Nitrogen Heterocyclic Group. Journal of Organic Chemistry, 2000, 65, 2249-2252.	3.2	90
72	A Self-Assembled Light-Harvesting Array of Seven Porphyrins in a Wheel and Spoke Architecture. Organic Letters, 2000, 2, 2563-2566.	4.6	90

#	ARTICLE	IF	CITATIONS
73	hole-storage reservoirsElectronic supplementary information (ESI) available: a description of multiphoton effects at high excitation intensities; the complete Experimental section including descriptions of the syntheses of the arrays; SEC data, 1H NMR spectra, and mass spectra for all new porphyrins and multiporphyrin arrays; a description of exploratory studies in the purification of	6.7	90
74	Zn20Fb; data from a compar. Journal of Materials Chemistry, 2002, 12, 65-80. Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. FASEB Journal, 2010, 24, 3160-3170.	0.5	90
75	Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 46, 100401.	11.6	90
76	Synthesis and Physicochemical Properties of Metallobacteriochlorins. Inorganic Chemistry, 2012, 51, 9443-9464.	4.0	89
77	Synthesis and excitedâ€state photodynamics of phenylethyneâ€linked porphyrin–phthalocyanine dyads. Journal of Materials Chemistry, 2000, 10, 283-296.	6.7	87
78	Rational Syntheses of Cyclic Hexameric Porphyrin Arrays for Studies of Self-Assembling Light-Harvesting Systems. Journal of Organic Chemistry, 2001, 66, 7402-7419.	3.2	87
79	Biohybrid Photosynthetic Antenna Complexes for Enhanced Light-Harvesting. Journal of the American Chemical Society, 2012, 134, 4589-4599.	13.7	87
80	PhotochemCAD 3: Diverse Modules for Photophysical Calculations with Multiple Spectral Databases. Photochemistry and Photobiology, 2018, 94, 277-289.	2.5	87
81	Visible light-harvesting in covalently-linked porphyrin-cyanine dyes. Tetrahedron, 1989, 45, 4845-4866.	1.9	86
82	Synthesis of Meso-Substituted Chlorins via Tetrahydrobilene-a Intermediates. Journal of Organic Chemistry, 2001, 66, 7342-7354.	3.2	86
83	A Survey of Acid Catalysts for Use in Two-Step, One-Flask Syntheses of Meso-Substituted Porphyrinic Macrocycles. Organic Letters, 2000, 2, 1745-1748.	4.6	85
84	Characterization of Charge Storage in Redox-Active Self-Assembled Monolayers. Langmuir, 2002, 18, 4030-4040.	3.5	85
85	Synthesis and Properties of Star-Shaped Multiporphyrinâ^'Phthalocyanine Light-Harvesting Arrays. Journal of Organic Chemistry, 1999, 64, 9090-9100.	3.2	84
86	Comparison of Electron-Transfer and Charge-Retention Characteristics of Porphyrin-Containing Self-Assembled Monolayers Designed for Molecular Information Storage. Journal of Physical Chemistry B, 2002, 106, 8639-8648.	2.6	84
87	Efficient Synthesis of Light-Harvesting Arrays Composed of Eight Porphyrins and One Phthalocyanine. Journal of Organic Chemistry, 1999, 64, 9101-9108.	3.2	83
88	Investigation of porphyrin-forming reactions. Part 3. The origin of scrambling in dipyrromethaneâ€+â€aldehyde condensations yielding trans-A2B2-tetraarylporphyrins. Perkin Transactions II RSC, 2001, , 701-711.	1.1	83
89	Synthesis of Linear Amphipathic Porphyrin Dimers and Trimers:Â An Approach to Bilayer Lipid Membrane Spanning Porphyrin Arrays. Journal of Organic Chemistry, 1996, 61, 7534-7544.	3.2	82
90	Synthesis of Thiol-Derivatized Europium Porphyrinic Triple-Decker Sandwich Complexes for Multibit Molecular Information Storage. Journal of Organic Chemistry, 2000, 65, 7379-7390.	3.2	81

#	Article	IF	CITATIONS
91	Structural Characterization of Modular Supramolecular Architectures in Solution. Journal of the American Chemical Society, 2004, 126, 14054-14062.	13.7	80
92	Synthesis of perylene–porphyrin building blocks and rod-like oligomers for light-harvesting applications. Journal of Materials Chemistry, 2002, 12, 3438-3451.	6.7	79
93	Porphyrins Bearing Mono or Tripodal Benzylphosphonic Acid Tethers for Attachment to Oxide Surfaces. Journal of Organic Chemistry, 2004, 69, 1453-1460.	3.2	79
94	A Tin-Complexation Strategy for Use with Diverse Acylation Methods in the Preparation of 1,9-Diacyldipyrromethanes. Journal of Organic Chemistry, 2004, 69, 765-777.	3.2	78
95	Laser Desorption Mass Spectrometry of Synthetic Multiporphyrin Arrays. Journal of Porphyrins and Phthalocyanines, 1997, 01, 93-99.	0.8	77
96	Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 2: Redox Properties, Optical Spectra and Electronic Structure. Photochemistry and Photobiology, 2007, 83, 1125-1143.	2.5	77
97	Photophysical Properties and Electronic Structure of Porphyrins Bearing Zero to Four <i>meso</i> -Phenyl Substituents: New Insights into Seemingly Well Understood Tetrapyrroles. Journal of Physical Chemistry A, 2016, 120, 9719-9731.	2.5	75
98	Investigation of Rational Syntheses of Heteroleptic Porphyrinic Lanthanide (Europium, Cerium) Triple-Decker Sandwich Complexes. Inorganic Chemistry, 2001, 40, 4762-4774.	4.0	74
99	N-Confused Tetraphenylporphyrin and Tetraphenylsapphyrin Formation in One-Flask Syntheses of Tetraphenylporphyrin. Journal of Organic Chemistry, 1999, 64, 1596-1603.	3.2	73
100	Rational Synthesis of Î ² -Substituted Chlorin Building Blocks. Journal of Organic Chemistry, 2000, 65, 7919-7929.	3.2	72
101	Characterization of Self-Assembled Monolayers of Porphyrins Bearing Multiple Thiol-Derivatized Rigid-Rod Tethers. Journal of the American Chemical Society, 2004, 126, 11944-11953.	13.7	72
102	Porphyrins Bearing Arylphosphonic Acid Tethers for Attachment to Oxide Surfaces. Journal of Organic Chemistry, 2004, 69, 1444-1452.	3.2	71
103	Regioselective 15-Bromination and Functionalization of a Stable Synthetic Bacteriochlorin. Journal of Organic Chemistry, 2007, 72, 5350-5357.	3.2	68
104	Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 1: Synthesis, Vibrational Properties and Excited-state Decay Characteristics. Photochemistry and Photobiology, 2007, 83, 1110-1124.	2.5	68
105	Bioconjugatable Porphyrins Bearing a Compact Swallowtail Motif for Water Solubility. Bioconjugate Chemistry, 2006, 17, 638-653.	3.6	67
106	Tapping the near-infrared spectral region with bacteriochlorin arrays. New Journal of Chemistry, 2011, 35, 511.	2.8	67
107	Investigation of two rational routes for preparing p-phenylene-linked porphyrin trimers. Tetrahedron, 2001, 57, 9285-9298.	1.9	66
108	Direct Synthesis of Magnesium Porphine via 1-Formyldipyrromethane. Journal of Organic Chemistry, 2007, 72, 5008-5011.	3.2	66

#	Article	IF	CITATIONS
109	Porphyrin Architectures Tailored for Studies of Molecular Information Storage. Journal of Organic Chemistry, 2004, 69, 6739-6750.	3.2	64
110	Tailoring a Bacteriochlorin Building Block with Cationic, Amphipathic, or Lipophilic Substituents. Journal of Organic Chemistry, 2008, 73, 5806-5820.	3.2	64
111	Synthesis and excited-state photodynamics of perylene–porphyrin dyads Part 3. Effects of perylene, linker, and connectivity on ultrafast energy transfer. Journal of Materials Chemistry, 2001, 11, 2420-2430.	6.7	63
112	Structural and Electron-Transfer Characteristics of O-, S-, and Se-Tethered Porphyrin Monolayers on Si(100). Journal of the American Chemical Society, 2004, 126, 15603-15612.	13.7	63
113	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 3: Spectral and structural properties. Tetrahedron, 2007, 63, 3850-3863.	1.9	63
114	Synthesis of phenylethyne-linked porphyrin dyads. Tetrahedron, 2004, 60, 2011-2023.	1.9	62
115	Diverse Redox-Active Molecules Bearing O-, S-, or Se-Terminated Tethers for Attachment to Silicon in Studies of Molecular Information Storage. Journal of Organic Chemistry, 2004, 69, 1435-1443.	3.2	62
116	Effects of aldehyde or dipyrromethane substituents on the reaction course leading to meso-substituted porphyrins. Tetrahedron, 2004, 60, 11435-11444.	1.9	61
117	Investigation of Streamlined Syntheses of Porphyrins Bearing Distinct Meso Substituents. Organic Process Research and Development, 2006, 10, 118-134.	2.7	61
118	Synthesis and Characterization of Tetrachlorodiarylethyne-Linked Porphyrin Dimers. Effects of Linker Architecture on Intradimer Electronic Communication. Inorganic Chemistry, 1998, 37, 1191-1201.	4.0	59
119	Synthesis and Electronic Properties of Regioisomerically Pure Oxochlorins. Journal of Organic Chemistry, 2002, 67, 7329-7342.	3.2	59
120	Electrical characterization of redox-active molecular monolayers on SiO2 for memory applications. Applied Physics Letters, 2003, 83, 198-200.	3.3	59
121	Alkylthio Unit as an α-Pyrrole Protecting Group for Use in Dipyrromethane Synthesis. Journal of Organic Chemistry, 2006, 71, 903-910.	3.2	59
122	Synthesis of a cofacial porphyrin-quinone via entropically favored macropolycyclization. Journal of the American Chemical Society, 1982, 104, 4498-4500.	13.7	58
123	Photophysics of a cofacial porphyrin-quinone cage molecule and related compounds: fluorescence properties, flash transients, and electron-transfer reactions. Journal of the American Chemical Society, 1988, 110, 3610-3621.	13.7	58
124	Synthesis of Porphyrins Bearing Hydrocarbon Tethers and Facile Covalent Attachment to Si(100). Journal of Organic Chemistry, 2004, 69, 5568-5577.	3.2	58
125	Stepwise Formation and Characterization of Covalently Linked Multiporphyrinâ ^{~,} Imide Architectures on Si(100). Journal of the American Chemical Society, 2006, 128, 6965-6974.	13.7	58
126	PhotochemCAD 2: A Refined Program with Accompanying Spectral Databases for Photochemical Calculations [¶] . Photochemistry and Photobiology, 2005, 81, 212-213.	2.5	58

#	Article	IF	CITATIONS
127	Absorption and Fluorescence Spectral Database of Chlorophylls and Analogues. Photochemistry and Photobiology, 2021, 97, 136-165.	2.5	58
128	Trans-Substituted porphyrin building blocks bearing iodo and ethynyl groups for applications in bioorganic and materials chemistry. Tetrahedron, 1998, 54, 7721-7734.	1.9	57
129	Synthesis of Cyclic Hexameric Porphyrin Arrays. Anchors for Surface Immobilization and Columnar Self-Assembly. Journal of Organic Chemistry, 2003, 68, 8199-8207.	3.2	57
130	Investigation of Tightly Coupled Porphyrin Arrays Comprised of Identical Monomers for Multibit Information Storage. Journal of Organic Chemistry, 2000, 65, 7371-7378.	3.2	56
131	Investigation of acid cocatalysis in syntheses of tetraphenylporphyrin. Journal of Porphyrins and Phthalocyanines, 2001, 05, 681-690.	0.8	56
132	Glaser-Mediated Synthesis and Photophysical Characterization of Diphenylbutadiyne-Linked Porphyrin Dyads. Journal of Organic Chemistry, 2002, 67, 2111-2117.	3.2	56
133	Design, synthesis, and characterization of prototypical multistate counters in three distinct architecturesElectronic supplementary information (ESI) available: 1H NMR and 13C NMR spectra for each dipyrromethane; absorption, LD-MS, and 1H NMR spectra for each porphyrin and each triple decker; absorption and LD-MS spectra for each triple-decker dyad. See	6.7	56
134	http://www.rsc.org/suppdatajm/b1/01/052001.Journal of Materials Chemistry, 2002, 12, 808-828. Introduction of a Third Meso Substituent into 5,10-Diaryl Chlorins and Oxochlorins. Journal of Organic Chemistry, 2005, 70, 275-285.	3.2	56
135	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 1: Synthesis. Tetrahedron, 2007, 63, 3826-3839.	1.9	56
136	Hydrogen Evolution Catalysis by a Sparsely Substituted Cobalt Chlorin. ACS Catalysis, 2017, 7, 3597-3606.	11.2	56
137	Synthesis of Thiol-Derivatized Porphyrin Dimers and Trimers for Studies of Architectural Effects on Multibit Information Storage. Journal of Organic Chemistry, 2000, 65, 7363-7370.	3.2	55
138	Practical synthesis of perylene-monoimide building blocks that possess features appropriate for use in porphyrin-based light-harvesting arrays. Tetrahedron, 2003, 59, 1191-1207.	1.9	55
139	Extending the Short and Long Wavelength Limits of Bacteriochlorin Near-Infrared Absorption via Dioxo- and Bisimide-Functionalization. Journal of Physical Chemistry B, 2015, 119, 4382-4395.	2.6	55
140	Refined Synthesis of 2,3,4,5-Tetrahydro-1,3,3-trimethyldipyrrin, a Deceptively Simple Precursor to Hydroporphyrins. Organic Process Research and Development, 2005, 9, 651-659.	2.7	54
141	Design, Synthesis, and Photophysical Characterization of Water-Soluble Chlorins. Journal of Organic Chemistry, 2008, 73, 3145-3158.	3.2	52
142	Stable Synthetic Bacteriochlorins for Photodynamic Therapy: Role of Dicyano Peripheral Groups, Central Metal Substitution (2H, Zn, Pd), and Cremophorâ€EL Delivery. ChemMedChem, 2012, 7, 2155-2167.	3.2	52
143	Examination of Chlorin–Bacteriochlorin Energyâ€ŧransfer Dyads as Prototypes for Nearâ€infrared Molecular Imaging Probes ^{â€} . Photochemistry and Photobiology, 2008, 84, 1061-1072.	2.5	51
144	Triple-Decker Sandwich Compounds Bearing Compact Triallyl Tripods for Molecular Information Storage Applications. Inorganic Chemistry, 2006, 45, 5479-5492.	4.0	50

#	Article	IF	CITATIONS
145	Masked Imidazolylâ^'Dipyrromethanes in the Synthesis of Imidazole-Substituted Porphyrins. Journal of Organic Chemistry, 2006, 71, 8807-8817.	3.2	50
146	Stable synthetic mono-substituted cationic bacteriochlorins mediate selective broad-spectrum photoinactivation of drug-resistant pathogens at nanomolar concentrations. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 119-127.	3.8	50
147	New Route to ABCD-Porphyrins via Bilanes. Journal of Organic Chemistry, 2007, 72, 7701-7714.	3.2	49
148	Synthesis and Excited-State Photodynamics of A Perylene-Monoimide-Oxochlorin Dyad. A Light-Harvesting Array. Journal of Physical Chemistry B, 2003, 107, 3431-3442.	2.6	48
149	Synthesis and Characterization of Bis(S-acetylthio)-Derivatized Europium Triple-Decker Monomers and Oligomers. Inorganic Chemistry, 2003, 42, 7431-7446.	4.0	48
150	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 2: Derivatization. Tetrahedron, 2007, 63, 3840-3849.	1.9	48
151	Synthesis of oligo(p-phenylene)-linked dyads containing free base, zinc(II) or thallium(III) porphyrins for studies in artificial photosynthesis. Tetrahedron, 2010, 66, 5549-5565.	1.9	48
152	Hindered diffusion of porphyrins and short-chain polystyrene in small pores. Macromolecules, 1989, 22, 1215-1219.	4.8	47
153	Palette of lipophilic bioconjugatable bacteriochlorins for construction of biohybrid light-harvesting architectures. Chemical Science, 2013, 4, 2036.	7.4	47
154	A survey of acid catalysts in dipyrromethanecarbinol condensations leading to meso-substituted porphyrins. Journal of Porphyrins and Phthalocyanines, 2001, 05, 810-823.	0.8	46
155	Multiple-bit storage properties of porphyrin monolayers on SiO2. Applied Physics Letters, 2004, 85, 1829-1831.	3.3	46
156	Synthesis and Film-Forming Properties of Ethynylporphyrins. Chemistry of Materials, 2005, 17, 3728-3742.	6.7	46
157	Molecular Electronic Tuning of Photosensitizers to Enhance Photodynamic Therapy: Synthetic Dicyanobacteriochlorins as a Case Study. Photochemistry and Photobiology, 2013, 89, 605-618.	2.5	46
158	Formation of Porphyrins in the Presence of Acid-Labile Metalloporphyrins:  A New Route to Mixed-Metal Multiporphyrin Arrays. Inorganic Chemistry, 2003, 42, 4322-4337.	4.0	45
159	Adsorption Characteristics of Tripodal Thiol-Functionalized Porphyrins on Gold. Journal of Physical Chemistry B, 2005, 109, 23963-23971.	2.6	45
160	A retrospective on the automation of laboratory synthetic chemistry. Chemometrics and Intelligent Laboratory Systems, 1992, 17, 15-45.	3.5	44
161	Investigation of the one-flask synthesis of porphyrins bearing meso-linked straps of variable length, rigidity, and redox activity. Tetrahedron, 1997, 53, 6755-6790.	1.9	44
162	Investigation of porphyrin-forming reactions. Part 1. Pyrroleâ€+â€aldehyde oligomerization in two-step, one-flask syntheses of meso-substituted porphyrinsâ€Sâ€. Perkin Transactions II RSC, 2001, , 677-686.	1.1	44

#	Article	IF	CITATIONS
163	Synthesis and Excited-State Photodynamics of Perylene-Bis(Imide)-Oxochlorin Dyads. A Charge-Separation Motif. Journal of Physical Chemistry B, 2003, 107, 3443-3454. Design and synthesis of light-harvesting rods for intrinsic rectification of the migration of	2.6	44
164	excited-state energy and ground-state holesElectronic supplementary information (ESI) available: 1H and 13C NMR spectra for all new porphyrin precursors; 1H NMR and LD-MS spectra for all new porphyrins and porphyrin arrays (LD-MS only for deprotected arrays 12â€ ² and 14â€ ² , and pentad 18); analytical SEC data for all porphyrin arrays. See http://www.rsc.org/suppdata/jm/b1/b108168c/. Journal	6.7	43
165	of Materials Chemistry, 2002, 12, 1530-1552. Structural and Electron-Transfer Characteristics of Carbon-Tethered Porphyrin Monolayers on Si(100). Journal of Physical Chemistry B, 2005, 109, 6323-6330.	2.6	43
166	A New Route for Installing the Isocyclic Ring on Chlorins Yielding 131-Oxophorbines. Journal of Organic Chemistry, 2006, 71, 7049-7052.	3.2	43
167	1,9-Bis(N,N-dimethylaminomethyl)dipyrromethanes in the synthesis of porphyrins bearing one or two meso substituents. Tetrahedron, 2005, 61, 10291-10302.	1.9	42
168	Investigation of Stepwise Covalent Synthesis on a Surface Yielding Porphyrin-Based Multicomponent Architectures. Journal of Organic Chemistry, 2006, 71, 3033-3050.	3.2	42
169	Investigation of Cocatalysis Conditions Using an Automated Microscale Multireactor Workstation:Â Synthesis ofmeso-Tetramesitylporphyrin. Organic Process Research and Development, 1999, 3, 28-37.	2.7	41
170	Imine-substituted dipyrromethanes in the synthesis of porphyrins bearing one or two <i>meso</i> substituents. Journal of Porphyrins and Phthalocyanines, 2005, 09, 554-574.	0.8	41
171	Porphyrin Dyads Bearing Carbon Tethers for Studies of High-Density Molecular Charge Storage on Silicon Surfaces. Journal of Organic Chemistry, 2006, 71, 1156-1171.	3.2	40
172	Effects of Multiple Pathways on Excited-State Energy Flow in Self-Assembled Wheel-and-Spoke Light-Harvesting Architectures. Journal of Physical Chemistry B, 2006, 110, 19131-19139.	2.6	40
173	Simple Formation of an Abiotic Porphyrinogen in Aqueous Solution. Origins of Life and Evolution of Biospheres, 2009, 39, 495-515.	1.9	40
174	De novo synthesis and photophysical characterization of annulated bacteriochlorins. Mimicking and extending the properties of bacteriochlorophylls. New Journal of Chemistry, 2011, 35, 587.	2.8	40
175	Structural characteristics that make chlorophylls green: interplay of hydrocarbon skeleton and substituents. New Journal of Chemistry, 2011, 35, 76-88.	2.8	40
176	Two Complementary Routes to 7-Substituted Chlorins. Partial Mimics of Chlorophyllb. Journal of Organic Chemistry, 2007, 72, 7736-7749.	3.2	39
177	Refined syntheses of hydrodipyrrin precursors to chlorin and bacteriochlorin building blocks. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1098-1110.	0.8	39
178	De Novo Synthesis of Long-Wavelength Absorbing Chlorin-13,15-dicarboximides. Journal of Organic Chemistry, 2010, 75, 1659-1673.	3.2	39
179	The Synthesis of Meso-Substituted Porphyrins. Catalysis By Metal Complexes, 1994, , 49-86.	0.6	38
180	Swallowtail Porphyrins:  Synthesis, Characterization and Incorporation into Porphyrin Dyads. Journal of Organic Chemistry, 2004, 69, 3700-3710.	3.2	38

#	Article	IF	CITATIONS
181	Mechanisms, Pathways, and Dynamics of Excited-State Energy Flow in Self-Assembled Wheel-and-Spoke Light-Harvesting Architectures. Journal of Physical Chemistry B, 2006, 110, 19121-19130.	2.6	38
182	Synthesis and Excited-state Photodynamics of a Chlorin–Bacteriochlorin Dyad—Through-space Versus Through-bond Energy Transfer in Tetrapyrrole Arrays. Photochemistry and Photobiology, 2008, 84, 786-801.	2.5	38
183	Panchromatic chromophore–tetrapyrrole light-harvesting arrays constructed from Bodipy, perylene, terrylene, porphyrin, chlorin, and bacteriochlorin building blocks. New Journal of Chemistry, 2016, 40, 8032-8052.	2.8	38
184	Comparison of Excited-State Energy Transfer in Arrays of Hydroporphyrins (Chlorins, Oxochlorins) versus Porphyrins:Â Rates, Mechanisms, and Design Criteria. Journal of the American Chemical Society, 2003, 125, 13461-13470.	13.7	37
185	Photophysical Properties of Phenylethyne-Linked Porphyrin and Oxochlorin Dyads. Journal of Physical Chemistry B, 2004, 108, 8190-8200.	2.6	37
186	Chlorin–Bacteriochlorin Energyâ€transfer Dyads as Prototypes for Nearâ€infrared Molecular Imaging Probes: Controlling Chargeâ€transfer and Fluorescence Properties in Polar Media. Photochemistry and Photobiology, 2009, 85, 909-920.	2.5	37
187	Integration of multiple chromophores with native photosynthetic antennas to enhance solar energy capture and delivery. Chemical Science, 2013, 4, 3924.	7.4	37
188	Synthesis of porphyrins bearing 1–4 hydroxymethyl groups and other one-carbon oxygenic substituents in distinct patterns. Tetrahedron, 2007, 63, 10657-10670.	1.9	36
189	Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants. New Journal of Chemistry, 2011, 35, 65-75.	2.8	36
190	Distinct Photophysical and Electronic Characteristics of Strongly Coupled Dyads Containing a Perylene Accessory Pigment and a Porphyrin, Chlorin, or Bacteriochlorin. Journal of Physical Chemistry B, 2013, 117, 9288-9304.	2.6	36
191	Total synthesis campaigns toward chlorophylls and related natural hydroporphyrins – diverse macrocycles, unrealized opportunities. Natural Product Reports, 2018, 35, 879-901.	10.3	36
192	PhotochemCAD 2. A Refined Program with Accompanying Spectral Database for Photochemical Calculations. Photochemistry and Photobiology, 2004, 81, 212-3.	2.5	36
193	A New Route tomeso-Formyl Porphyrins. Journal of Organic Chemistry, 2004, 69, 5112-5115.	3.2	35
194	A compact water-soluble porphyrin bearing an iodoacetamido bioconjugatable site. Organic and Biomolecular Chemistry, 2008, 6, 187-194.	2.8	35
195	Self-Assembled Light-Harvesting System from Chromophores in Lipid Vesicles. Journal of Physical Chemistry B, 2015, 119, 10231-10243.	2.6	35
196	Direct Synthesis of Palladium Porphyrins from Acyldipyrromethanes. Journal of Organic Chemistry, 2005, 70, 3500-3510.	3.2	34
197	Swallowtail Bacteriochlorins. Lipophilic Absorbers for the Near-Infrared. Organic Letters, 2008, 10, 1931-1934.	4.6	34
198	Rational or Statistical Routes from 1-Acyldipyrromethanes to <i>meso</i> -Substituted Porphyrins. Distinct Patterns, Multiple Pyridyl Substituents, and Amphipathic Architectures. Journal of Organic Chemistry, 2008, 73, 6187-6201.	3.2	34

#	Article	IF	CITATIONS
199	Synthesis and Photophysical Characterization of Stable Indium Bacteriochlorins. Inorganic Chemistry, 2011, 50, 4607-4618.	4.0	34
200	Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 3: The Distinctive Impact of Auxochromes at the 7― <i>versus</i> 3â€Positions. Photochemistry and Photobiology, 2012, 88, 651-674.	2.5	34
201	Panchromatic absorbers for solar light-harvesting. Chemical Communications, 2014, 50, 14512-14515.	4.1	34
202	Tailoring Panchromatic Absorption and Excited-State Dynamics of Tetrapyrrole–Chromophore (Bodipy, Rylene) Arrays—Interplay of Orbital Mixing and Configuration Interaction. Journal of the American Chemical Society, 2017, 139, 17547-17564.	13.7	34
203	Synthesis of porphyrins tailored with eight facially-encumbering groups. An approach to solid-state light-harvesting complexes. Tetrahedron, 1994, 50, 11097-11112.	1.9	33
204	Investigation of the Scope of a New Route to ABCD-Bilanes and ABCD-Porphyrins. Journal of Organic Chemistry, 2008, 73, 6728-6742.	3.2	33
205	Synthesis of 1-Formyldipyrromethanes. Journal of Organic Chemistry, 2006, 71, 4328-4331.	3.2	32
206	Synthesis and structural properties of porphyrin analogues of bacteriochlorophyll c. Tetrahedron, 2007, 63, 12629-12638.	1.9	32
207	Synthesis and Photophysical Characterization of Porphyrin, Chlorin and Bacteriochlorin Molecules Bearing Tethers for Surface Attachment. Photochemistry and Photobiology, 2007, 83, 1513-1528.	2.5	32
208	Synthesis and Photochemical Properties of 12-Substituted versus 13-Substituted Chlorins. Journal of Organic Chemistry, 2009, 74, 5276-5289.	3.2	32
209	Amphiphilic chlorins and bacteriochlorins in micellar environments. Molecular design, de novo synthesis, and photophysical properties. Chemical Science, 2013, 4, 3459.	7.4	32
210	Versatile design of biohybrid light-harvesting architectures to tune location, density, and spectral coverage of attached synthetic chromophores for enhanced energy capture. Photosynthesis Research, 2014, 121, 35-48.	2.9	32
211	A Compact All-Carbon Tripodal Tether Affords High Coverage of Porphyrins on Silicon Surfaces. Journal of Organic Chemistry, 2005, 70, 7972-7978.	3.2	31
212	Synthesis of Î ² -substituted porphyrin building blocks and conversion to diphenylethyne-linked porphyrin dimers. Tetrahedron, 1999, 55, 6771-6784.	1.9	30
213	Synthesis of hydrodipyrrins tailored for reactivity at the 1- and 9-positions. Tetrahedron, 2007, 63, 37-55.	1.9	30
214	Design and synthesis of water-soluble bioconjugatable trans-AB-porphyrins. Tetrahedron, 2008, 64, 11440-11448.	1.9	30
215	Synthesis and photophysical properties of chlorins bearing 0-4 distinct meso-substituents. Photochemical and Photobiological Sciences, 2013, 12, 2089-2109.	2.9	29
216	Bioconjugatable, PEGylated hydroporphyrins for photochemistry and photomedicine. Narrow-band, red-emitting chlorins. New Journal of Chemistry, 2016, 40, 7721-7740.	2.8	29

#	Article	IF	CITATIONS
217	Investigation of porphyrin-forming reactions. Part 4. Examination of the reaction course in syntheses of porphyrins via dipyrromethanecarbinols â€. Perkin Transactions II RSC, 2001, , 712-718.	1.1	28
218	Effects of diverse acid catalysts on the reaction course in the two-step one-flask synthesis of <i>meso</i> -tetraphenylporphyrin. Journal of Porphyrins and Phthalocyanines, 2002, 06, 159-185.	0.8	28
219	Synthesis of Swallowtail-Substituted Multiporphyrin Rods. Journal of Organic Chemistry, 2004, 69, 5796-5799.	3.2	28
220	Characterization of Porphyrin Surface Orientation in Monolayers on Au(111) and Si(100) Using Spectroscopically Labeled Molecules. Journal of Physical Chemistry C, 2007, 111, 12693-12704.	3.1	28
221	Regioselective Bromination Tactics in the de Novo Synthesis of Chlorophyll <i>b</i> Analogues. Journal of Organic Chemistry, 2009, 74, 3237-3247.	3.2	28
222	Fast and Robust Route to Hydroporphyrinâ^'Chalcones with Extended Red or Near-Infrared Absorption. Organic Letters, 2009, 11, 1761-1764.	4.6	28
223	A <i>trans</i> -AB-Bacteriochlorin Building Block. Journal of Organic Chemistry, 2011, 76, 9478-9487.	3.2	28
224	Northern–Southern Route to Synthetic Bacteriochlorins. Journal of Organic Chemistry, 2016, 81, 11882-11897.	3.2	28
225	Construction of the Bacteriochlorin Macrocycle with Concomitant Nazarov Cyclization To Form the Annulated Isocyclic Ring: Analogues of Bacteriochlorophyll <i>a</i> . Journal of Organic Chemistry, 2017, 82, 2489-2504.	3.2	28
226	Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO ₂ Conversion to CO. ACS Catalysis, 2018, 8, 10131-10136.	11.2	28
227	Photophysical Properties and Electronic Structure of Zinc(II) Porphyrins Bearing 0–4 <i>meso</i> -Phenyl Substituents: Zinc Porphine to Zinc Tetraphenylporphyrin (ZnTPP). Journal of Physical Chemistry A, 2020, 124, 7776-7794.	2.5	28
228	Synthesis of facially-encumbered porphyrins. An approach to light-harvesting antenna complexes. Tetrahedron Letters, 1991, 32, 1703-1706.	1.4	27
229	Investigation of porphyrin-forming reactions. Part 2. Examination of the reaction course in two-step, one-flask syntheses of meso-substituted porphyrins â€. Perkin Transactions II RSC, 2001, , 687-700.	1.1	27
230	Boron-Complexation Strategy for Use with 1-Acyldipyrromethanes. Journal of Organic Chemistry, 2004, 69, 5354-5364.	3.2	27
231	9-Acylation of 1-Acyldipyrromethanes Containing a Dialkylboron Mask for the α-Acylpyrrole Motif. Journal of Organic Chemistry, 2004, 69, 8356-8365.	3.2	27
232	Rational Routes to Formyl-Substituted Chlorins. Journal of Organic Chemistry, 2007, 72, 5839-5842.	3.2	27
233	Self-organization of tetrapyrrole constituents to give a photoactive protocell. Chemical Science, 2012, 3, 1963.	7.4	27
234	Photophysical Properties and Electronic Structure of Chlorin-Imides: Bridging the Gap between Chlorins and Bacteriochlorins, Journal of Physical Chemistry B, 2015, 119, 7503-7515	2.6	27

	Jonathan S Lindsey		
Article		IF	CITATIONS
Experiment manager software for an automated chemistry workstation, including a scl parallel experimentation. Chemometrics and Intelligent Laboratory Systems, 1992, 17,		3.5	26
Regioselective β-pyrrolic electrophilic substitution of hydrodipyrrin–dialkylboron cor facilitates access to synthetic models for chlorophyll f. New Journal of Chemistry, 2014		2.8	25
Synthetic bacteriochlorins bearing polar motifs (carboxylate, phosphonate, ammonium 2015, 39, 5694-5714.		'84314 rg 2.8	BT /Overloc 25
Diversity, isomer composition, and design of combinatorial libraries of tetrapyrrole mad Journal of Porphyrins and Phthalocyanines, 2012, 16, 1-13.	crocycles.	0.8	24
A tandem combinatorial model for the prebiogenesis of diverse tetrapyrrole macrocycl Journal of Chemistry, 2012, 36, 1057.	es. New	2.8	24
Synthesis of 24 Bacteriochlorin Isotopologues, Each Containing a Symmetrical Pair of 1 in the Inner Core of the Macrocycle. Journal of Organic Chemistry, 2014, 79, 1001-101		3.2	24
Photophysical Characterization of the Naturally Occurring Dioxobacteriochlorin Tolypc Synthetic Oxobacteriochlorin Analogues. Photochemistry and Photobiology, 2017, 93,	orphin A and , 1204-1215.	2.5	24
Experiment planner for strategic experimentation with an automated chemistry works Chemometrics and Intelligent Laboratory Systems, 1992, 17, 75-94.	tation.	3.5	23
Soluble precipitable porphyrins for use in targeted molecular brachytherapy. New Jourr Chemistry, 2008, 32, 436-451.	hal of	2.8	23
Excited-State Photodynamics of Peryleneâ [^] Porphyrin Dyads. 5. Tuning Light-Harvesting via Perylene Substituents, Connection Motif, and Three-Dimensional Architecture. Jour Chemistry B, 2010, 114, 14249-14264.		2.6	23
Virtual Libraries of Tetrapyrrole Macrocycles. Combinatorics, Isomers, Product Distribu Data Mining. Journal of Chemical Information and Modeling, 2011, 51, 2233-2247.	tions, and	5.4	23
Hydrophilic tetracarboxy bacteriochlorins for photonics applications. Organic and Bion Chemistry, 2014, 12, 86-103.	nolecular	2.8	23
Photophysical comparisons of PEGylated porphyrins, chlorins and bacteriochlorins in w Journal of Chemistry, 2016, 40, 9648-9656.	vater. New	2.8	23
Nearly Chromatography-Free Synthesis of the A3B-Porphyrin 5-(4-Hydroxymethylphenyl)-10,15,20-tri-p-tolylporphinatozinc(II). Organic Process Rese Development, 2006, 10, 304-314.	earch and	2.7	22
Synthetic bacteriochlorins with integral spiro-piperidine motifs. New Journal of Chemis 1157.	try, 2013, 37,	2.8	22
Probing Electronic Communication for Efficient Light-Harvesting Functionality: Dyads (Common Perylene and a Porphyrin, Chlorin, or Bacteriochlorin. Journal of Physical Cher	Containing a mistry B, 2014,	2.6	22

	110, 1050-1047.		
251	Synthesis of arrays containing porphyrin, chlorin, and perylene-imide constituents for panchromatic light-harvesting and charge separation. RSC Advances, 2018, 8, 23854-23874.	3.6	22
252	Heuristics from Modeling of Spectral Overlap in Förster Resonance Energy Transfer (FRET). Journal of Chemical Information and Modeling, 2019, 59, 652-667.	5.4	22

#

236

238

240

242

243

244

245

246

247

248

249

250

#	Article	IF	CITATIONS
253	Structural studies of sparsely substituted synthetic chlorins and phorbines establish benchmarks for changes in the ligand core and framework of chlorophyll macrocycles. Journal of Molecular Structure, 2010, 979, 27-45.	3.6	21
254	Photophysical Properties and Electronic Structure of Bacteriochlorin–Chalcones with Extended Nearâ€Infrared Absorption. Photochemistry and Photobiology, 2013, 89, 586-604.	2.5	21
255	Acidolysis of intermediates used in the preparation of core-modified porphyrinic macrocycles. Journal of Porphyrins and Phthalocyanines, 2002, 06, 186-197.	0.8	20
256	Solution STM images of porphyrins on HOPG reveal that subtle differences in molecular structure dramatically alter packing geometry. Journal of Porphyrins and Phthalocyanines, 2005, 09, 387-392.	0.8	20
257	Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 4: How Formyl Group Location Dictates the Spectral Properties of Chlorophyllsb,dandf. Photochemistry and Photobiology, 2015, 91, 331-342.	2.5	20
258	Synthesis and photophysical characteristics of 2,3,12,13-tetraalkylbacteriochlorins. New Journal of Chemistry, 2016, 40, 5942-5956.	2.8	20
259	Origin of Panchromaticity in Multichromophore–Tetrapyrrole Arrays. Journal of Physical Chemistry A, 2018, 122, 7181-7201.	2.5	20
260	The fluorescence quantum yield parameter in Förster resonance energy transfer (FRET)—Meaning, misperception, and molecular design. Chemical Physics Reviews, 2021, 2, 011302.	5.7	20
261	Primordial Oil Slick and the Formation of Hydrophobic Tetrapyrrole Macrocycles. Astrobiology, 2012, 12, 1055-1068.	3.0	19
262	Expanded combinatorial formation of porphyrin macrocycles in aqueous solution containing vesicles. A prebiotic model. New Journal of Chemistry, 2013, 37, 1073.	2.8	19
263	Regiospecifically α- ¹³ C-Labeled Porphyrins for Studies of Ground-State Hole Transfer in Multiporphyrin Arrays. Journal of Organic Chemistry, 2008, 73, 6947-6959.	3.2	18
264	Competing Knorr and Fischer–Fink pathways to pyrroles in neutral aqueous solution. Tetrahedron, 2012, 68, 6957-6967.	1.9	18
265	Catalytic diversification upon metal scavenging in a prebiotic model for formation of tetrapyrrole macrocycles. New Journal of Chemistry, 2013, 37, 2716.	2.8	18
266	Synthesis and evaluation of cationic bacteriochlorin amphiphiles with effective <i>in vitro</i> photodynamic activity against cancer cells at low nanomolar concentration. Journal of Porphyrins and Phthalocyanines, 2013, 17, 73-85.	0.8	18
267	Multi-step excitation energy transfer engineered in genetic fusions of natural and synthetic light-harvesting proteins. Journal of the Royal Society Interface, 2017, 14, 20160896.	3.4	18
268	Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community. Applied and Environmental Microbiology, 2017, 83, .	3.1	18
269	Investigation of Phthalocyanine Catalysts for the Aerobic Synthesis of meso-Substituted Porphyrins. Journal of Porphyrins and Phthalocyanines, 1997, 01, 385-394.	0.8	17
270	De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls. New Journal of Chemistry, 2011, 35, 2671.	2.8	17

#	Article	IF	CITATIONS
271	Synthesis of perylene-porphyrin dyads for light-harvesting studies. Journal of Porphyrins and Phthalocyanines, 2002, 06, 626-642.	0.8	16
272	Synthesis of dipyrrin-containing architectures. Journal of Porphyrins and Phthalocyanines, 2005, 09, 745-759.	0.8	16
273	Facile synthesis of a B,D-tetradehydrocorrin and rearrangement to bacteriochlorins. New Journal of Chemistry, 2011, 35, 1376.	2.8	16
274	Aqueous–membrane partitioning of β-substituted porphyrins encompassing diverse polarity. New Journal of Chemistry, 2013, 37, 1087.	2.8	16
275	Synthesis, photophysics and electronic structure of oxobacteriochlorins. New Journal of Chemistry, 2017, 41, 3732-3744.	2.8	16
276	Annulated bacteriochlorins for near-infrared photophysical studies. New Journal of Chemistry, 2019, 43, 7209-7232.	2.8	16
277	Riley Oxidation of Heterocyclic Intermediates on Paths to Hydroporphyrins—A Review. Molecules, 2020, 25, 1858.	3.8	16
278	Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis. Coordination Chemistry Reviews, 2022, 456, 214278.	18.8	16
279	A parallel simplex search method for use with an automated chemistry workstation. Chemometrics and Intelligent Laboratory Systems, 2002, 62, 129-147.	3.5	15
280	Bioconjugatable, PEGylated hydroporphyrins for photochemistry and photomedicine. Narrow-band, near-infrared-emitting bacteriochlorins. New Journal of Chemistry, 2016, 40, 7750-7767.	2.8	15
281	Quantitation of Tolyporphins, Diverse Tetrapyrrole Secondary Metabolites with Chlorophyllâ€Like Absorption, from a Filamentous Cyanobacterium–Microbial Community. Phytochemical Analysis, 2018, 29, 205-216.	2.4	15
282	Synthesis of the Ring C Pyrrole of Native Chlorophylls and Bacteriochlorophylls. Journal of Organic Chemistry, 2019, 84, 11286-11293.	3.2	15
283	Bacteriochlorinâ€bis(spermine) conjugate affords an effective photodynamic action to eradicate microorganisms. Journal of Biophotonics, 2020, 13, e201960061.	2.3	15
284	A perspective on the redox properties of tetrapyrrole macrocycles. Physical Chemistry Chemical Physics, 2021, 23, 19130-19140.	2.8	15
285	Genome sequence, metabolic properties and cyanobacterial attachment of Porphyrobacter sp. HT-58-2 isolated from a filamentous cyanobacterium–microbial consortium. Microbiology (United Kingdom), 2018, 164, 1229-1239.	1.8	15
286	Effects of Counterion Mobility, Surface Morphology, and Charge Screening on the Electron-Transfer Rates of Porphyrin Monolayers. Journal of Physical Chemistry C, 2008, 112, 6173-6180.	3.1	14
287	Vibronic Characteristics and Spin-Density Distributions in Bacteriochlorins as Revealed by Spectroscopic Studies of 16 Isotopologues. Implications for Energy- and Electron-Transfer in Natural Photosynthesis and Artificial Solar-Energy Conversion. Journal of Physical Chemistry B, 2014, 118, 7520-7532.	2.6	14
288	Tolyporphins A–R, unusual tetrapyrrole macrocycles in a cyanobacterium from Micronesia, assessed quantitatively from the culture HT-58-2. New Journal of Chemistry, 0, , .	2.8	14

#	Article	IF	CITATIONS
289	Design, Synthesis, and Utility of Defined Molecular Scaffolds. Organics, 2021, 2, 161-273.	1.3	14
290	An automated microscale chemistry workstation capable of parallel, adaptive experimentation. Chemometrics and Intelligent Laboratory Systems, 1999, 48, 181-203.	3.5	13
291	Diverse porphyrin dimers as candidates for high-density charge-storage molecules. Journal of Porphyrins and Phthalocyanines, 2006, 10, 22-32.	0.8	13
292	Near-infrared tunable bacteriochlorins equipped for bioorthogonal labeling. New Journal of Chemistry, 2015, 39, 4534-4550.	2.8	13
293	Polarity-tunable and wavelength-tunable bacteriochlorins bearing a single carboxylic acid or NHS ester. Use in a protein bioconjugation model system. New Journal of Chemistry, 2015, 39, 403-419.	2.8	13
294	Cellular localization of tolyporphins, unusual tetrapyrroles, in a microbial photosynthetic community determined using hyperspectral confocal fluorescence microscopy. Photosynthesis Research, 2019, 141, 259-271.	2.9	13
295	Decision-tree programs for an adaptive automated chemistry workstation. Application to catalyst screening experiments. Chemometrics and Intelligent Laboratory Systems, 1999, 48, 205-217.	3.5	12
296	A planning module for performing grid search, factorial design, and related combinatorial studies on an automated chemistry workstation. Chemometrics and Intelligent Laboratory Systems, 1999, 48, 219-234.	3.5	12
297	Implementation of the multidirectional search algorithm on an automated chemistry workstation. A parallel yet adaptive approach for reaction optimization. Chemometrics and Intelligent Laboratory Systems, 1999, 48, 235-256.	3.5	12
298	Photophysical properties and electronic structure of retinylidene—chlorin—chalcones and analogues. Photochemical and Photobiological Sciences, 2014, 13, 634-650.	2.9	12
299	Paley's watchmaker analogy and prebiotic synthetic chemistry in surfactant assemblies. Formaldehyde scavenging by pyrroles leading to porphyrins as a case study. Organic and Biomolecular Chemistry, 2015, 13, 10025-10031.	2.8	12
300	Tuning the Electronic Structure and Properties of Perylene–Porphyrin–Perylene Panchromatic Absorbers. Journal of Physical Chemistry A, 2016, 120, 7434-7450.	2.5	12
301	Asymmetric Synthesis of a Bacteriochlorophyll Model Compound Containing <i>trans</i> -Dialkyl Substituents in Ring D. Journal of Organic Chemistry, 2020, 85, 6605-6619.	3.2	12
302	Synthesis of model bacteriochlorophylls containing substituents of native rings A, C and E. New Journal of Chemistry, 2021, 45, 13302-13316.	2.8	12
303	Beyond green with synthetic chlorophylls – Connecting structural features with spectral properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100513.	11.6	12
304	Further development of a versatile microscale automated workstation for parallel adaptive experimentation. Laboratory Robotics and Automation, 1999, 11, 217-223.	0.2	11
305	Comprehensive Characterization of Hybrid Junctions Comprised of a Porphyrin Monolayer Sandwiched Between a Coinage Metal Overlayer and a Si(100) Substrate. Journal of Physical Chemistry C, 2008, 112, 9474-9485.	3.1	11
306	Enhanced Lightâ€Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1â€like Antennas. Photochemistry and Photobiology, 2014, 90, 1264-1276.	2.5	11

#	Article	IF	CITATIONS
307	Amphiphilic, hydrophilic, or hydrophobic synthetic bacteriochlorins in biohybrid light-harvesting architectures: consideration of molecular designs. Photosynthesis Research, 2014, 122, 187-202.	2.9	11
308	Single-Polymer–Single-Cargo Strategy Packages Hydrophobic Fluorophores in Aqueous Solution with Retention of Inherent Brightness. ACS Macro Letters, 2019, 8, 79-83.	4.8	11
309	Progress towards synthetic chlorins with graded polarity, conjugatable substituents, and wavelength tunability. Journal of Porphyrins and Phthalocyanines, 2015, 19, 547-572.	0.8	10
310	Synthesis and photophysical characterization of bacteriochlorins equipped with integral swallowtail substituents. New Journal of Chemistry, 2017, 41, 4360-4376.	2.8	10
311	Synthesis of tailored hydrodipyrrins and their examination in directed routes to bacteriochlorins and tetradehydrocorrins. New Journal of Chemistry, 2017, 41, 11170-11189.	2.8	10
312	Chlorophyll-Inspired Red-Region Fluorophores: Building Block Synthesis and Studies in Aqueous Media. Molecules, 2018, 23, 130.	3.8	10
313	Chromogenic agents built around a multifunctional double-triazine framework for enzymatically triggered cross-linking under physiological conditions. New Journal of Chemistry, 2020, 44, 3856-3867.	2.8	10
314	Multistate molecular information storage using S-acetylthio-derivatized dyads of triple-decker sandwich coordination compounds. Journal of Porphyrins and Phthalocyanines, 2005, 09, 491-508.	0.8	9
315	Probing Groundâ€state Hole Transfer Between Equivalent, Electrochemically Inaccessible States in Multiporphyrin Arrays Using Timeâ€resolved Optical Spectroscopy. Photochemistry and Photobiology, 2009, 85, 693-704.	2.5	9
316	Statistical considerations on the formation of circular photosynthetic light-harvesting complexes from Rhodopseudomonas palustris. Photosynthesis Research, 2014, 121, 49-60.	2.9	9
317	Synthesis of diverse acyclic precursors to pyrroles for studies of prebiotic routes to tetrapyrrole macrocycles. New Journal of Chemistry, 2016, 40, 8786-8808.	2.8	9
318	Mass spectrometric detection of chlorophyll <i>a</i> and the tetrapyrrole secondary metabolite tolyporphin A in the filamentous cyanobacterium HT-58-2. Approaches to high-throughput screening of intact cyanobacteria. Journal of Porphyrins and Phthalocyanines, 2017, 21, 759-768.	0.8	9
319	Use of the Nascent Isocyclic Ring to Anchor Assembly of the Full Skeleton of Model Chlorophylls. Journal of Organic Chemistry, 2020, 85, 702-715.	3.2	9
320	Enzymatically triggered chromogenic cross-linking agents under physiological conditions. New Journal of Chemistry, 2020, 44, 719-743.	2.8	9
321	Metalâ^'Molecule Interactions Upon Deposition of Copper Overlayers on Reactively Functionalized Porphyrin Monolayers on Si(100). Langmuir, 2008, 24, 6698-6704.	3.5	8
322	Comparison of Electron-Transfer Rates for Metal- versus Ring-Centered Redox Processes of Porphyrins in Monolayers on Au(111). Langmuir, 2008, 24, 12047-12053.	3.5	8
323	Encoding isotopic watermarks in molecular electronic materials as an anti-counterfeiting strategy: Application to porphyrins for information storage. Journal of Porphyrins and Phthalocyanines, 2011, 15, 505-516.	0.8	8
324	Hydrophilic bioconjugatable <i>trans</i> -AB-porphyrins and peptide conjugates. Journal of Porphyrins and Phthalocyanines, 2015, 19, 663-678.	0.8	8

#	Article	IF	CITATIONS
325	Complexity in structure-directed prebiotic chemistry. Unexpected compositional richness from competing reactants in tetrapyrrole formation. New Journal of Chemistry, 2016, 40, 6421-6433.	2.8	8
326	Self-assembly with fluorescence readout in a free base dipyrrin–polymer triggered by metal ion binding in aqueous solution. New Journal of Chemistry, 2019, 43, 9711-9724.	2.8	8
327	Study of conditions for streamlined assembly of a model bacteriochlorophyll from two dihydrodipyrrin halves. New Journal of Chemistry, 2021, 45, 569-581.	2.8	8
328	Single-Fluorophore Single-Chain Nanoparticle Undergoes Fluorophore-Driven Assembly with Fluorescence Features Retained in Physiological Milieu. ACS Applied Polymer Materials, 2021, 3, 1767-1776.	4.4	8
329	Synthesis of porphyrins for metal deposition studies in molecular information storage applications. Journal of Porphyrins and Phthalocyanines, 2007, 11, 699-712.	0.8	7
330	Solution-State Conformational Ensemble of a Hexameric Porphyrin Array Characterized Using Molecular Dynamics and X-ray Scattering. Journal of Physical Chemistry A, 2009, 113, 2516-2523.	2.5	7
331	Enumeration of Virtual Libraries of Combinatorial Modular Macrocyclic (Bracelet, Necklace) Architectures and Their Linear Counterparts. Journal of Chemical Information and Modeling, 2013, 53, 2203-2216.	5.4	7
332	Integration of Cyanine, Merocyanine and Styryl Dye Motifs with Synthetic Bacteriochlorins. Photochemistry and Photobiology, 2016, 92, 111-125.	2.5	7
333	The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles. Origins of Life and Evolution of Biospheres, 2017, 47, 93-119.	1.9	7
334	Synthesis and Spectral Properties of meso-Arylbacteriochlorins, Including Insights into Essential Motifs of their Hydrodipyrrin Precursors. Molecules, 2017, 22, 634.	3.8	7
335	New molecular design for blue BODIPYs. New Journal of Chemistry, 2019, 43, 7233-7242.	2.8	7
336	Aqueous solubilization of hydrophobic tetrapyrrole macrocycles by attachment to an amphiphilic single-chain nanoparticle (SCNP). New Journal of Chemistry, 2020, 44, 21293-21308.	2.8	7
337	Considerations of the biosynthesis and molecular diversity of tolyporphins. New Journal of Chemistry, 2021, 45, 12097-12107.	2.8	7
338	Fluorescence Assay for Tolyporphins Amidst Abundant Chlorophyll in Crude Cyanobacterial Extracts. Photochemistry and Photobiology, 2021, , .	2.5	7
339	Electronic Structure and Excited-State Dynamics of Rylene–Tetrapyrrole Panchromatic Absorbers. Journal of Physical Chemistry A, 2021, 125, 7900-7919.	2.5	7
340	Charge—Retention Characteristics of Self-Assembled Monolayers of Molecular—Wire-Linked Porphyrins on Gold. ACS Symposium Series, 2003, , 51-61.	0.5	6
341	Probing the Rate of Hole Transfer in Oxidized Synthetic Chlorin Dyads via Site-Specific ¹³ C-Labeling. Journal of Organic Chemistry, 2010, 75, 3193-3202.	3.2	6
342	Effects of Linker Torsional Constraints on the Rate of Ground-State Hole Transfer in Porphyrin Dyads. Inorganic Chemistry, 2012, 51, 11076-11086.	4.0	6

#	Article	IF	CITATIONS
343	Serendipitous synthetic entrée to tetradehydro analogues of cobalamins. New Journal of Chemistry, 2013, 37, 3964.	2.8	6
344	Elaboration of an unexplored substitution site in synthetic bacteriochlorins. Journal of Porphyrins and Phthalocyanines, 2015, 19, 887-902.	0.8	6
345	Bioconjugatable synthetic chlorins rendered water-soluble with three PEG-12 groups <i>via</i> click chemistry. Journal of Porphyrins and Phthalocyanines, 2020, 24, 362-378.	0.8	6
346	Identification of Putative Biosynthetic Gene Clusters for Tolyporphins in Multiple Filamentous Cyanobacteria. Life, 2021, 11, 758.	2.4	6
347	A two-tiered strategy for simplex and multidirectional optimization of reactions with an automated chemistry workstation. Chemometrics and Intelligent Laboratory Systems, 2002, 62, 149-158.	3.5	5
348	A Bipodal-Tethered Porphyrin for Attachment to Silicon Surfaces in Studies of Molecular Information Storage. Journal of Nanoscience and Nanotechnology, 2008, 8, 4813-4817.	0.9	5
349	Enumeration of Isomers of Substituted Tetrapyrrole Macrocycles: From Classical Problems in Biology to Modern Combinatorial Libraries. Handbook of Porphyrin Science, 2012, , 1-80.	0.8	5
350	Complexity in structure-directed prebiotic chemistry. Effect of a defective competing reactant in tetrapyrrole formation. New Journal of Chemistry, 2015, 39, 8273-8281.	2.8	5
351	Natural Product Gene Clusters in the Filamentous Nostocales Cyanobacterium HT-58-2. Life, 2021, 11, 356.	2.4	5
352	<i>Meso</i> bromination and derivatization of synthetic bacteriochlorins. New Journal of Chemistry, 2022, 46, 5556-5572.	2.8	5
353	Synthesis of bacteriochlorins bearing diverse β-substituents. New Journal of Chemistry, 2022, 46, 5534-5555.	2.8	5
354	An experiment planner for performing successive focused grid searches with an automated chemistry workstation. Chemometrics and Intelligent Laboratory Systems, 2002, 62, 115-128.	3.5	4
355	An approach for parallel and adaptive screening of discrete compounds followed by reaction optimization using an automated chemistry workstation. Chemometrics and Intelligent Laboratory Systems, 2002, 62, 159-170.	3.5	4
356	New stable synthetic bacteriochlorins for photodynamic therapy of melanoma. Proceedings of SPIE, 2009, , .	0.8	4
357	Activation Energies for Oxidation of Porphyrin Monolayers Anchored to Au(111). Langmuir, 2010, 26, 15718-15721.	3.5	4
358	NMR spectral properties of 16 synthetic bacteriochlorins with site-specific 13C or 15N substitution. Journal of Porphyrins and Phthalocyanines, 2014, 18, 433-456.	0.8	4
359	Scope and limitations of two model prebiotic routes to tetrapyrrole macrocycles. New Journal of Chemistry, 2016, 40, 7445-7455.	2.8	4
360	Characterization of Hydroporphyrins Covalently Attached to Si(100). Journal of Porphyrins and Phthalocyanines, 2017, 21, 453-464.	0.8	4

#	Article	IF	CITATIONS
361	Synthesis of AD-Dihydrodipyrrins Equipped with Latent Substituents of Native Chlorophylls and Bacteriochlorophylls. Journal of Organic Chemistry, 2021, 86, 11794-11811.	3.2	4
362	Developing a user community in the photosciences: a website for spectral data and PhotochemCAD. , 2019, , .		4
363	Absorption and fluorescence spectra of organic compounds from 40 sources – archives, repositories, databases, and literature search engines. , 2020, , .		4
364	Complexity in structure-directed prebiotic chemistry. Reaction bifurcation from a β-diketone in tetrapyrrole formation. New Journal of Chemistry, 2016, 40, 6434-6440.	2.8	3
365	De Novo Synthesis of Bacteriochlorins Bearing Four Trideuteriomethyl Groups. Organics, 2022, 3, 22-37.	1.3	3
366	Expanding Covalent Attachment Sites of Nonnative Chromophores to Encompass the Câ€Terminal Hydrophilic Domain in Biohybrid Lightâ€Harvesting Architectures. ChemPhotoChem, 2018, 2, 300-313.	3.0	2
367	Engineering of an archaeal phosphodiesterase to trigger aggregation-induced emission (AIE) of synthetic substrates. New Journal of Chemistry, 2020, 44, 14266-14277.	2.8	2
368	Fourfold alkyl wrapping of a copper(II) porphyrin thwarts macrocycle π–π stacking in a compact supramolecular package. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 647-654.	0.5	2
369	Analysis of Wikipedia pageviews to identify popular chemicals. , 2020, , .		2
370	In Situ, Protein-Mediated Generation of a Photochemically Active Chlorophyll Analogue in a Mutant Bacterial Photosynthetic Reaction Center. Biochemistry, 2021, 60, 1260-1275.	2.5	1
371	Peptide-based scaffolds for in vivo immobilization and enzyme attachment in therapeutic applications. , 2020, , .		1
372	Red and near-infrared fluorophores inspired by chlorophylls: consideration of practical brightness in multicolor flow cytometry and biomedical sciences. , 2018, , .		1
373	Crystal Structure of 1,9-Dibromo-5-phenyldipyrrin, Tetrapyrrole Synthesis Derivative and Free Base Ligand of BODIPY Building Blocks. X-ray Structure Analysis Online, 2020, 36, 21-22.	0.2	1
374	Chasing the green echiuran worm Bonellia in tidal pools of Okinawa. , 2022, , .		0