
Fredrik Bäckhed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4727970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11070-11075.	3.3	5,247
2	The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15718-15723.	3.3	5,131
3	Host-Bacterial Mutualism in the Human Intestine. Science, 2005, 307, 1915-1920.	6.0	4,326
4	From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 2016, 165, 1332-1345.	13.5	3,962
5	Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249.	13.7	3,582
6	The gut microbiota — masters of host development and physiology. Nature Reviews Microbiology, 2013, 11, 227-238.	13.6	2,711
7	Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host and Microbe, 2008, 3, 213-223.	5.1	2,535
8	Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 2013, 498, 99-103.	13.7	2,401
9	Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host and Microbe, 2015, 17, 690-703.	5.1	2,276
10	Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 979-984.	3.3	2,197
11	Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 2016, 24, 41-50.	7.2	1,734
12	Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metabolism, 2013, 17, 225-235.	7.2	1,671
13	Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell, 2014, 156, 84-96.	13.5	1,615
14	Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell, 2012, 150, 470-480.	13.5	1,603
15	Diet–microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.	13.7	1,602
16	The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host and Microbe, 2018, 23, 705-715.	5.1	1,441
17	Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16767-16772.	3.3	1,279
18	Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metabolism, 2015, 22, 971-982.	7.2	1,190

#	Article	IF	CITATIONS
19	Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 2017, 23, 850-858.	15.2	1,165
20	Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature Communications, 2012, 3, 1245.	5.8	970
21	Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22, 1079-1089.	15.2	952
22	Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4592-4598.	3.3	943
23	Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing. PLoS ONE, 2008, 3, e2836.	1.1	901
24	FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature, 2014, 509, 183-188.	13.7	810
25	Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metabolism, 2015, 22, 658-668.	7.2	763
26	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	5.9	717
27	Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Reviews Endocrinology, 2011, 7, 639-646.	4.3	653
28	Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4485-93.	3.3	652
29	Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metabolism, 2015, 22, 228-238.	7.2	638
30	Defining a Healthy Human Gut Microbiome: Current Concepts, Future Directions, and Clinical Applications. Cell Host and Microbe, 2012, 12, 611-622.	5.1	615
31	The gut microbiota regulates bone mass in mice. Journal of Bone and Mineral Research, 2012, 27, 1357-1367.	3.1	585
32	Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature, 2012, 484, 524-528.	13.7	562
33	Gut microbial metabolites as multi-kingdom intermediates. Nature Reviews Microbiology, 2021, 19, 77-94.	13.6	557
34	The endocannabinoid system links gut microbiota to adipogenesis. Molecular Systems Biology, 2010, 6, 392.	3.2	547
35	The composition of the gut microbiota shapes the colon mucus barrier. EMBO Reports, 2015, 16, 164-177.	2.0	519
36	Insights Into the Role of the Microbiome in Obesity and Type 2 Diabetes. Diabetes Care, 2015, 38, 159-165.	4.3	519

#	Article	IF	CITATIONS
37	Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell, 2018, 175, 947-961.e17.	13.5	517
38	The gut microbiota modulates host energy and lipid metabolism in mice. Journal of Lipid Research, 2010, 51, 1101-1112.	2.0	508
39	Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metabolism, 2016, 24, 151-157.	7.2	496
40	Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME Journal, 2014, 8, 2116-2130.	4.4	491
41	Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host and Microbe, 2018, 23, 27-40.e7.	5.1	477
42	Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nature Medicine, 2018, 24, 1526-1531.	15.2	436
43	Role of gut microbiota in atherosclerosis. Nature Reviews Cardiology, 2017, 14, 79-87.	6.1	428
44	A catalog of the mouse gut metagenome. Nature Biotechnology, 2015, 33, 1103-1108.	9.4	422
45	Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. Journal of Clinical Investigation, 2009, 119, 1335-1349.	3.9	397
46	Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes, 2013, 62, 3341-3349.	0.3	384
47	Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization. Cell Host and Microbe, 2015, 18, 582-592.	5.1	368
48	Microbiota-induced obesity requires farnesoid X receptor. Gut, 2017, 66, 429-437.	6.1	355
49	Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metabolism, 2015, 22, 320-331.	7.2	345
50	Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials, 2003, 24, 3427-3436.	5.7	335
51	Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6458-6463.	3.3	325
52	Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut, 2012, 61, 1124-1131.	6.1	321
53	An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans. Cell Metabolism, 2018, 27, 559-571.e5.	7.2	321
54	Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia, 2018, 61, 810-820.	2.9	313

#	Article	IF	CITATIONS
55	Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nature Microbiology, 2018, 3, 1461-1471.	5.9	310
56	Microbial Modulation of Energy Availability in the Colon Regulates Intestinal Transit. Cell Host and Microbe, 2013, 14, 582-590.	5.1	306
57	Intestinal Microbiota in Cardiovascular Health and Disease. Journal of the American College of Cardiology, 2019, 73, 2089-2105.	1.2	301
58	The gut microbiota modulates host amino acid and glutathione metabolism in mice. Molecular Systems Biology, 2015, 11, 834.	3.2	291
59	The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos. Cell Reports, 2016, 14, 1655-1661.	2.9	290
60	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	13.7	283
61	Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nature Microbiology, 2016, 1, 16140.	5.9	275
62	Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications, 2015, 6, 7629.	5.8	274
63	Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metabolism, 2016, 23, 1216-1223.	7.2	274
64	Effects of the gut microbiota on obesity and glucose homeostasis. Trends in Endocrinology and Metabolism, 2011, 22, 117-123.	3.1	263
65	Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut, 2012, 61, 1701-1707.	6.1	252
66	α-Haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature, 2000, 405, 694-697.	13.7	238
67	The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metabolism, 2020, 32, 379-390.e3.	7.2	233
68	Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. Journal of Internal Medicine, 2010, 268, 320-328.	2.7	225
69	Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature, 2012, 483, 627-631.	13.7	218
70	Microbial Modulation of Insulin Sensitivity. Cell Metabolism, 2014, 20, 753-760.	7.2	215
71	The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of Internal Medicine, 2016, 280, 339-349.	2.7	212
72	Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host and Microbe, 2021, 29, 765-776.e3.	5.1	208

#	Article	IF	CITATIONS
73	Programming of Host Metabolism by the Gut Microbiota. Annals of Nutrition and Metabolism, 2011, 58, 44-52.	1.0	201
74	Metabolic effects of <i><scp>L</scp>actobacillus reuteri</i> <scp>DSM</scp> 17938 in people with type 2 diabetes: <scp>A</scp> randomized controlled trial. Diabetes, Obesity and Metabolism, 2017, 19, 579-589.	2.2	199
75	Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nature Communications, 2014, 5, 5648.	5.8	197
76	Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut, 2020, 69, 502-512.	6.1	188
77	Evolution, human-microbe interactions, and life history plasticity. Lancet, The, 2017, 390, 521-530.	6.3	178
78	From Association to Causality: the Role of the Gut Microbiota and Its Functional Products on Host Metabolism. Molecular Cell, 2020, 78, 584-596.	4.5	177
79	The Gut Microbiota Reduces Leptin Sensitivity and the Expression of the Obesity-Suppressing Neuropeptides Proglucagon (Gcg) and Brain-Derived Neurotrophic Factor (Bdnf) in the Central Nervous System. Endocrinology, 2013, 154, 3643-3651.	1.4	164
80	Microbial-induced meprin β cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12396-12401.	3.3	159
81	Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. Npj Biofilms and Microbiomes, 2016, 2, 16009.	2.9	159
82	Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature, 2018, 560, 489-493.	13.7	153
83	Intestinal Microbiota During Infancy and Its Implications for Obesity. Journal of Pediatric Gastroenterology and Nutrition, 2009, 48, 249-256.	0.9	149
84	Induction of innate immune responses by Escherichia coli and purified lipopolysaccharide correlate with organ- and cell-specific expression of Toll-like receptors within the human urinary tract. Cellular Microbiology, 2001, 3, 153-158.	1.1	145
85	Age-Dependent TLR3 Expression of the Intestinal Epithelium Contributes to Rotavirus Susceptibility. PLoS Pathogens, 2012, 8, e1002670.	2.1	141
86	Angiopoietin-like 4 (ANGPTL4, Fasting-induced Adipose Factor) Is a Direct Glucocorticoid Receptor Target and Participates in Glucocorticoid-regulated Triglyceride Metabolism. Journal of Biological Chemistry, 2009, 284, 25593-25601.	1.6	134
87	Linking Microbiota to Human Diseases: A Systems Biology Perspective. Trends in Endocrinology and Metabolism, 2015, 26, 758-770.	3.1	134
88	Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biology, 2015, 16, 62.	3.8	131
89	Gastric Mucosal Recognition ofHelicobacter pyloriIs Independent of Tollâ€Like Receptor 4. Journal of Infectious Diseases, 2003, 187, 829-836.	1.9	130
90	Lactobacillus reuteri Prevents Diet-Induced Obesity, but not Atherosclerosis, in a Strain Dependent Fashion in Apoeâ^'/â^' Mice. PLoS ONE, 2012, 7, e46837.	1.1	128

#	Article	IF	CITATIONS
91	Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. Microbes and Infection, 2003, 5, 1057-1063.	1.0	127
92	Intestinal Permeability Is Associated With Visceral Adiposity in Healthy Women. Obesity, 2011, 19, 2280-2282.	1.5	125
93	Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut, 2017, 66, 620-632.	6.1	125
94	Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. European Heart Journal, 2020, 41, 4259-4267.	1.0	124
95	Impact of Gut Microbiota and Diet on the Development of Atherosclerosis in <i>Apoe</i> ^{â^²/â²} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2318-2326.	1.1	123
96	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	5.8	122
97	Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP-1 and PYY in Enteroendocrine Control of Metabolism. Endocrinology, 2016, 157, 176-194.	1.4	119
98	Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E334-E352.	1.8	119
99	Exposure to the gut microbiota drives distinct methylome and transcriptome changes in intestinal epithelial cells during postnatal development. Genome Medicine, 2018, 10, 27.	3.6	117
100	Regulation of Serum Amyloid A3 (SAA3) in Mouse Colonic Epithelium and Adipose Tissue by the Intestinal Microbiota. PLoS ONE, 2009, 4, e5842.	1.1	117
101	Altered Mucus Glycosylation in Core 1 O-Glycan-Deficient Mice Affects Microbiota Composition and Intestinal Architecture. PLoS ONE, 2014, 9, e85254.	1.1	114
102	Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. European Heart Journal, 2022, 43, 518-533.	1.0	113
103	Network analyses identify liverâ€specific targets for treating liver diseases. Molecular Systems Biology, 2017, 13, 938.	3.2	112
104	The gut microbiota and mucosal homeostasis. Gut Microbes, 2013, 4, 118-124.	4.3	111
105	Oral microbiota in patients with atherosclerosis. Atherosclerosis, 2015, 243, 573-578.	0.4	103
106	Toll-like receptor 4-mediated signaling by epithelial surfaces: necessity or threat?. Microbes and Infection, 2003, 5, 951-959.	1.0	102
107	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	13.7	102
108	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	15.2	102

7

#	Article	IF	CITATIONS
109	Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 606-611.	3.3	95
110	Microbial regulation of GLP-1 and L-cell biology. Molecular Metabolism, 2016, 5, 753-758.	3.0	95
111	Microbial Imidazole Propionate Affects Responses to Metformin through p38Î ³ -Dependent Inhibitory AMPK Phosphorylation. Cell Metabolism, 2020, 32, 643-653.e4.	7.2	83
112	TLR4-dependent recognition of lipopolysaccharide by epithelial cells requires sCD14. Cellular Microbiology, 2002, 4, 493-501.	1.1	82
113	Crosstalk between Bile Acids and Gut Microbiota and Its Impact on Farnesoid X Receptor Signalling. Digestive Diseases, 2017, 35, 246-250.	0.8	80
114	Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metabolism, 2021, 33, 1483-1492.e10.	7.2	79
115	Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health. Nature Communications, 2021, 12, 4798.	5.8	76
116	Identification of Target Tissue Glycosphingolipid Receptors for Uropathogenic, F1C-fimbriated Escherichia coli and Its Role in Mucosal Inflammation. Journal of Biological Chemistry, 2002, 277, 18198-18205.	1.6	74
117	Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism. Journal of Lipid Research, 2016, 57, 474-481.	2.0	72
118	Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota. Journal of Lipid Research, 2017, 58, 412-419.	2.0	66
119	Dietary destabilisation of the balance between the microbiota and the colonic mucus barrier. Gut Microbes, 2019, 10, 246-250.	4.3	66
120	Integration of molecular profiles in a longitudinal wellness profiling cohort. Nature Communications, 2020, 11, 4487.	5.8	66
121	Roux-en-Y Gastric Bypass Surgery Induces Early Plasma Metabolomic and Lipidomic Alterations in Humans Associated with Diabetes Remission. PLoS ONE, 2015, 10, e0126401.	1.1	66
122	Host responses to the human microbiome. Nutrition Reviews, 2012, 70, S14-S17.	2.6	65
123	Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metabolic Engineering, 2018, 49, 128-142.	3.6	65
124	Dynamics of the normal gut microbiota: A longitudinal one-year population study in Sweden. Cell Host and Microbe, 2022, 30, 726-739.e3.	5.1	64
125	Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. BioEssays, 2016, 38, 455-464.	1.2	63
126	Effects of a Vegetarian Diet on Cardiometabolic Risk Factors, Gut Microbiota, and Plasma Metabolome in Subjects With Ischemic Heart Disease: AÂRandomized, Crossover Study. Journal of the American Heart Association, 2020, 9, e016518.	1.6	62

#	Article	IF	CITATIONS
127	Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 240-245.	1.2	61
128	Simplified Intestinal Microbiota to Study Microbe-Diet-Host Interactions in a Mouse Model. Cell Reports, 2019, 26, 3772-3783.e6.	2.9	61
129	Expression of the blood-group-related glycosyltransferase <i>B4galnt2</i> influences the intestinal microbiota in mice. ISME Journal, 2012, 6, 1345-1355.	4.4	60
130	The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation. Journal of Hepatology, 2017, 66, 382-389.	1.8	60
131	Regulation of bone mass by the gut microbiota is dependent on NOD1 and NOD2 signaling. Cellular Immunology, 2017, 317, 55-58.	1.4	58
132	The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E840-E851.	1.8	57
133	Insulin-Driven PI3K-AKT Signaling in the Hepatocyte Is Mediated by Redundant PI3Kα and PI3Kβ Activities and Is Promoted by RAS. Cell Metabolism, 2019, 29, 1400-1409.e5.	7.2	57
134	L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes, 2020, 69, 614-623.	0.3	54
135	Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS ONE, 2017, 12, e0181693.	1.1	53
136	Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.	6.1	53
137	Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass. ISME Journal, 2017, 11, 2035-2046.	4.4	52
138	Microbial regulation of the L cell transcriptome. Scientific Reports, 2018, 8, 1207.	1.6	52
139	The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Reports, 2021, 35, 109163.	2.9	50
140	Bacterial profile in human atherosclerotic plaques. Atherosclerosis, 2017, 263, 177-183.	0.4	49
141	Meat-metabolizing bacteria in atherosclerosis. Nature Medicine, 2013, 19, 533-534.	15.2	48
142	Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production. Molecular Metabolism, 2016, 5, 263-270.	3.0	48
143	Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model. Diabetes, 2015, 64, 2791-2804.	0.3	47
144	Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics. European Journal of Nutrition, 2019, 58, 2365-2376.	1.8	46

#	Article	IF	CITATIONS
145	Gut microbiota affects lens and retinal lipid composition. Experimental Eye Research, 2009, 89, 604-607.	1.2	45
146	Specific synbiotics in early life protect against dietâ€induced obesity in adult mice. Diabetes, Obesity and Metabolism, 2018, 20, 1408-1418.	2.2	45
147	Age-Dependent Susceptibility to Enteropathogenic Escherichia coli (EPEC) Infection in Mice. PLoS Pathogens, 2016, 12, e1005616.	2.1	45
148	Obeticholic acid may increase the risk of gallstone formation in susceptible patients. Journal of Hepatology, 2019, 71, 986-991.	1.8	44
149	Changes in Intestinal Microflora in Obesity: Cause or Consequence?. Journal of Pediatric Gastroenterology and Nutrition, 2009, 48, S56-7.	0.9	43
150	The Gut Microbiota Modulates Glycaemic Control and Serum Metabolite Profiles in Non-Obese Diabetic Mice. PLoS ONE, 2014, 9, e110359.	1.1	43
151	Feeding diversified protein sources exacerbates hepatic insulin resistance via increased gut microbial branched-chain fatty acids and mTORC1 signaling in obese mice. Nature Communications, 2021, 12, 3377.	5.8	42
152	In vitro co-cultures of human gut bacterial species as predicted from co-occurrence network analysis. PLoS ONE, 2018, 13, e0195161.	1.1	41
153	Protein Turnover in Epithelial Cells and Mucus along the Gastrointestinal Tract Is Coordinated by the Spatial Location and Microbiota. Cell Reports, 2020, 30, 1077-1087.e3.	2.9	41
154	Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metabolism, 2021, 33, 2355-2366.e8.	7.2	40
155	Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle. Diabetologia, 2017, 60, 553-567.	2.9	37
156	6α-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice. Gut, 2023, 72, 314-324.	6.1	36
157	Linkage between cellular communications, energy utilization, and proliferation in metastatic neuroendocrine cancers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12505-12510.	3.3	34
158	Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut, 2020, 69, 1229-1238.	6.1	33
159	Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice. Cell Host and Microbe, 2021, 29, 1249-1265.e9.	5.1	32
160	99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: The normal gut microbiota in health and disease. Clinical and Experimental Immunology, 2010, 160, 80-84.	1.1	31
161	Host–microbiota interaction induces bi-phasic inflammation and glucose intolerance in mice. Molecular Metabolism, 2017, 6, 1371-1380.	3.0	30
162	TRIF Signaling Drives Homeostatic Intestinal Epithelial Antimicrobial Peptide Expression. Journal of Immunology, 2014, 193, 4223-4234.	0.4	29

#	ARTICLE	IF	CITATIONS
163	Microbial fermentation of flaxseed fibers modulates the transcriptome of GPR41-expressing enteroendocrine cells and protects mice against diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E453-E463.	1.8	29
164	The developing infant gut microbiome: A strain-level view. Cell Host and Microbe, 2022, 30, 627-638.	5.1	29
165	A role for the gut microbiota in energy harvesting?. Gut, 2010, 59, 1589-1590.	6.1	28
166	Generating and Analyzing Germâ€Free Mice. Current Protocols in Mouse Biology, 2012, 2, 307-316.	1.2	28
167	Inflammation―and tumorâ€induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells. FASEB Journal, 2013, 27, 1973-1980.	0.2	28
168	Obesity-associated microbiota contributes to mucus layer defects in genetically obese mice. Journal of Biological Chemistry, 2020, 295, 15712-15726.	1.6	28
169	A systems biology approach to understand gut microbiota and host metabolism in morbid obesity: design of the BARIA Longitudinal Cohort Study. Journal of Internal Medicine, 2021, 289, 340-354.	2.7	28
170	The Metabolic Role and Therapeutic Potential of the Microbiome. Endocrine Reviews, 2022, 43, 907-926.	8.9	26
171	Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance. Scientific Reports, 2017, 7, 43515.	1.6	25
172	Helicobacter pylori Infection Induces Interleukin-8 Receptor Expression in the Human Gastric Epithelium. Infection and Immunity, 2003, 71, 3357-3360.	1.0	24
173	Role of the Lipopolysaccharide-CD14 Complex for the Activity of Hemolysin from Uropathogenic Escherichia coli. Infection and Immunity, 2007, 75, 997-1004.	1.0	23
174	Microbially produced glucagon-like peptide 1 improves glucose tolerance in mice. Molecular Metabolism, 2016, 5, 725-730.	3.0	23
175	Glucoseâ€lowering effects and mechanisms of the bile acidâ€sequestering resin sevelamer. Diabetes, Obesity and Metabolism, 2018, 20, 1623-1631.	2.2	21
176	Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice. Journal of Biological Chemistry, 2020, 295, 969-980.	1.6	21
177	Regulation of body fat mass by the gut microbiota: Possible mediation by the brain. Peptides, 2016, 77, 54-59.	1.2	20
178	Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice. Journal of Biological Chemistry, 2020, 295, 969-980.	1.6	20
179	Microbial regulation of SAA3 expression in mouse colon and adipose tissue. Gut Microbes, 2010, 1, 55-57.	4.3	18

#	Article	IF	CITATIONS
181	TLR4-dependent lipopolysaccharide signalling in epithelial cells is independent of extracellular protease activity. Cellular Microbiology, 2002, 4, 297-303.	1.1	17
182	Microbial regulation of enteroendocrine cells. Med, 2021, 2, 553-570.	2.2	17
183	Duodenal <i>Anaerobutyricum soehngenii</i> infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study. Gut, 2021, , gutinl-2020-323297.	6.1	16
184	The Gut Microbiota Reduces Colonization of the Mesenteric Lymph Nodes and IL-12-Independent IFN-Î ³ Production During Salmonella Infection. Frontiers in Cellular and Infection Microbiology, 2015, 5, 93.	1.8	15
185	Longitudinal plasma protein profiling of newly diagnosed type 2 diabetes. EBioMedicine, 2021, 63, 103147.	2.7	15
186	A Continuous Battle for Host-Derived Glycans Between a Mucus Specialist and a Glycan Generalist in vitro and in vivo. Frontiers in Microbiology, 2021, 12, 632454.	1.5	15
187	Plasma Imidazole Propionate Is Positively Correlated with Blood Pressure in Overweight and Obese Humans. Nutrients, 2021, 13, 2706.	1.7	14
188	Cyp3a11 is not essential for the formation of murine bile acids. Biochemistry and Biophysics Reports, 2017, 10, 70-75.	0.7	13
189	Hepatic expression of lipopolysaccharide-binding protein (Lbp) is induced by the gut microbiota through Myd88 and impairs glucose tolerance in mice independent of obesity. Molecular Metabolism, 2020, 37, 100997.	3.0	13
190	Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germâ€free mice. FASEB Journal, 2019, 33, 2719-2731.	0.2	12
191	Hyperinsulinemia Is Highly Associated With Markers of Hepatocytic Senescence in Two Independent Cohorts. Diabetes, 2022, 71, 1929-1936.	0.3	11
192	Addressing the gut microbiome and implications for obesity. International Dairy Journal, 2010, 20, 259-261.	1.5	10
193	Deletion of the gene encoding MyD88 protects from anorexia in a mouse tumor model. Brain, Behavior, and Immunity, 2010, 24, 554-557.	2.0	10
194	Drug the Bug!. Cell, 2015, 163, 1565-1566.	13.5	10
195	Structural characterization of the microbial enzyme urocanate reductase mediating imidazole propionate production. Nature Communications, 2021, 12, 1347.	5.8	9
196	The next decade of metabolism. Nature Metabolism, 2019, 1, 2-4.	5.1	8
197	Differences in gut microbiota composition in metabolic syndrome and type 2 diabetes subjects in a multi-ethnic population: the HELIUS study. Proceedings of the Nutrition Society, 2020, 79, .	0.4	8
198	Gut microbial characteristics in poor appetite and undernutrition: a cohort of older adults and microbiota transfer in germâ€free mice. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2188-2201.	2.9	8

#	Article	IF	CITATIONS
199	Could gut microbiota protect against sclerosing cholangitis?. Hepatology, 2016, 63, 26-27.	3.6	6
200	Protein Intake, Metabolic Status and the Gut Microbiota in Different Ethnicities: Results from Two Independent Cohorts. Nutrients, 2021, 13, 3159.	1.7	6
201	Anorexia and fat aversion induced by vertical sleeve gastrectomy is attenuated in neurotensin receptor 1 deficient mice. Endocrinology, 2021, 162, .	1.4	5
202	Liver-specific RORα deletion does not affect the metabolic susceptibility to western style diet feeding. Molecular Metabolism, 2019, 23, 82-87.	3.0	4
203	23, 22 Calling the Microbiota to Control Atherosclerosis. Immunity, 2018, 49, 788-790.	6.6	3
204	7 Host-pathogen interactions: Structure and function of pili. Methods in Microbiology, 2002, 31, 133-159.	0.4	2
205	Shining light on microbial signaling to distant organs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7617-7619.	3.3	2
206	Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism Journal of Biological Chemistry, 2012, 287, 4394.	1.6	1
207	Gut Microbiota in Metabolic Syndrome. , 2014, , 171-181.		1
208	The Impact of Diet and Obesity on Intestinal Mucus Barrier Function. Gastroenterology, 2017, 152, S1004.	0.6	1
209	The human intestinal microbiota and its relationship to energy balance. Food Nutrition Research, 2006, 50, 121-123.	0.3	0
210	The impact of dietary choline and microbiota on the development of atherosclerosis in Apoe-/- mice. Atherosclerosis, 2017, 263, e98.	0.4	0
211	Correction: Amendments: Author Correction: A catalog of the mouse gut metagenome. Nature Biotechnology, 2019, 37, 102-102.	9.4	0
212	Saccharin Does Not Affect Insulin Resistance in 14 Overweight Adults without Diabetes. Diabetes, 2018, 67, 771-P.	0.3	0
213	Staying strong during hibernation. Science, 2022, 375, 376-377.	6.0	0