## Alexander M Van Der Linden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4727446/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Loss of circRNAs from the <i>crhâ€l </i> gene extends the mean lifespan in <i>Caenorhabditis elegans</i> .<br>Aging Cell, 2022, 21, e13560.                                                                     | 6.7 | 6         |
| 2  | Dietary vitamin B12 regulates chemosensory receptor gene expression via the MEF2 transcription factor in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2022, 12, .                              | 1.8 | 4         |
| 3  | A salt-induced kinase is required for the metabolic regulation of sleep. PLoS Biology, 2020, 18, e3000220.                                                                                                      | 5.6 | 37        |
| 4  | Regulation of sleep by KIN-29 is not developmental. MicroPublication Biology, 2020, 2020, .                                                                                                                     | 0.1 | 0         |
| 5  | The salt-inducible kinase KIN-29 regulates lifespan via the class II histone-deacetylase HDA-4.<br>MicroPublication Biology, 2020, 2020, .                                                                      | 0.1 | Ο         |
| 6  | Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics, 2018, 19, 8.                                                                                                              | 2.8 | 139       |
| 7  | Increased food intake after starvation enhances sleep in Drosophila melanogaster. Journal of<br>Genetics and Genomics, 2017, 44, 319-326.                                                                       | 3.9 | 18        |
| 8  | Cell-Autonomous and Non-Cell-Autonomous Regulation of a Feeding State-Dependent Chemoreceptor<br>Gene via MEF-2 and bHLH Transcription Factors. PLoS Genetics, 2016, 12, e1006237.                              | 3.5 | 21        |
| 9  | Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population.<br>Journal of Neuroscience Methods, 2015, 249, 66-74.                                                              | 2.5 | 11        |
| 10 | Plasticity of chemoreceptor gene expression: Sensory and circuit inputs modulate state-dependent chemoreceptors. Worm, 2015, 4, e1023497.                                                                       | 1.0 | 4         |
| 11 | Feeding State, Insulin and NPR-1 Modulate Chemoreceptor Gene Expression via Integration of Sensory and Circuit Inputs. PLoS Genetics, 2014, 10, e1004707.                                                       | 3.5 | 42        |
| 12 | Differential hippocampal gene expression is associated with climateâ€related natural variation in<br>memory and the hippocampus in foodâ€caching chickadees. Molecular Ecology, 2013, 22, 397-408.              | 3.9 | 29        |
| 13 | Genome-Wide Analysis of Light- and Temperature-Entrained Circadian Transcripts in Caenorhabditis<br>elegans. PLoS Biology, 2010, 8, e1000503.                                                                   | 5.6 | 60        |
| 14 | <i>Cis</i> â€regulatory mechanisms of gene expression in an olfactory neuron type in <i>Caenorhabditis<br/>elegans</i> . Developmental Dynamics, 2009, 238, 3080-3092.                                          | 1.8 | 18        |
| 15 | The ECL-4 PKG Acts With KIN-29 Salt-Inducible Kinase and Protein Kinase A to Regulate Chemoreceptor<br>Gene Expression and Sensory Behaviors in <i>Caenorhabditis elegans</i> . Genetics, 2008, 180, 1475-1491. | 2.9 | 47        |
| 16 | Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans. Neural Development, 2007, 2, 24.                      | 2.4 | 61        |
| 17 | KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II<br>HDAC. EMBO Journal, 2007, 26, 358-370.                                                                    | 7.8 | 84        |
| 18 | Chemical Genetics Reveals an RGS/G-Protein Role in the Action of a Compound. PLoS Genetics, 2006, 2, e57.                                                                                                       | 3.5 | 32        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Shotgun Cloning of Transposon Insertions in the Genome ofCaenorhabditis elegans. Comparative and Functional Genomics, 2004, 5, 225-229.                                                                                        | 2.0 | 9         |
| 20 | Hyperactivation of the G12-Mediated Signaling Pathway in Caenorhabditis elegans Induces a<br>Developmental Growth Arrest via Protein Kinase C. Current Biology, 2003, 13, 516-521.                                             | 3.9 | 21        |
| 21 | Proteins Interacting withCaenorhabditis elegans CαSubunits. Comparative and Functional Genomics, 2003, 4, 479-491.                                                                                                             | 2.0 | 37        |
| 22 | Genome-Wide RNAi of C. elegans Using the Hypersensitive rrf-3 Strain Reveals Novel Gene Functions.<br>PLoS Biology, 2003, 1, e12.                                                                                              | 5.6 | 545       |
| 23 | The G-Protein β-Subunit GPB-2 in Caenorhabditis elegans Regulates the Goα-Gqα Signaling Network<br>Through Interactions With the Regulator of G-Protein Signaling Proteins EGL-10 and EAT-16. Genetics,<br>2001, 158, 221-235. | 2.9 | 56        |
| 24 | G protein hyperactivation of the Caenorhabditis elegans adenylyl cyclase SGS-1 induces neuronal degeneration. EMBO Journal, 1998, 17, 5059-5065.                                                                               | 7.8 | 43        |