Lakhmir S Chawla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/472711/publications.pdf

Version: 2024-02-01

81 papers 11,621 citations

42 h-index 84 g-index

85 all docs 85 docs citations

85 times ranked 10069 citing authors

#	Article	IF	CITATIONS
1	Acute Kidney Injury and Chronic Kidney Disease as Interconnected Syndromes. New England Journal of Medicine, 2014, 371, 58-66.	27.0	1,483
2	Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Critical Care, 2013, 17, R25.	5.8	969
3	Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nature Reviews Nephrology, 2017, 13, 241-257.	9.6	946
4	Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney International, 2012, 82, 516-524.	5. 2	665
5	The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney International, 2011, 79, 1361-1369.	5. 2	596
6	Angiotensin II for the Treatment of Vasodilatory Shock. New England Journal of Medicine, 2017, 377, 419-430.	27.0	591
7	Validation of Cell-Cycle Arrest Biomarkers for Acute Kidney Injury Using Clinical Adjudication. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 932-939.	5 . 6	402
8	Recovery after Acute Kidney Injury. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 784-791.	5 . 6	309
9	Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney International, 2009, 76, 1089-1097.	5. 2	266
10	Development and Standardization of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury. Critical Care, 2013, 17, R207.	5.8	265
11	Association between AKI and Long-Term Renal and Cardiovascular Outcomes in United States Veterans. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 448-456.	4.5	256
12	Biomarkers of renal function, which and when?. Clinica Chimica Acta, 2015, 438, 350-357.	1.1	251
13	Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrology Dialysis Transplantation, 2014, 29, 2054-2061.	0.7	232
14	Furosemide Stress Test and Biomarkers for the Prediction of AKI Severity. Journal of the American Society of Nephrology: JASN, 2015, 26, 2023-2031.	6.1	205
15	Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney International, 2014, 85, 659-667.	5. 2	203
16	Tissue Inhibitor Metalloproteinase-2 (TIMP-2)âIGF-Binding Protein-7 (IGFBP7) Levels Are Associated with Adverse Long-Term Outcomes in Patients with AKI. Journal of the American Society of Nephrology: JASN, 2015, 26, 1747-1754.	6.1	196
17	Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Critical Care Medicine, 2018, 46, 949-957.	0.9	186
18	Renal Angina. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 943-949.	4. 5	163

#	Article	IF	CITATIONS
19	Combining Functional and Tubular Damage Biomarkers Improves Diagnostic Precision for Acute Kidney Injury After Cardiac Surgery. Journal of the American College of Cardiology, 2014, 64, 2753-2762.	2.8	160
20	Management of Refractory Vasodilatory Shock. Chest, 2018, 154, 416-426.	0.8	157
21	Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Critical Care, 2014, 18, 534.	5. 8	138
22	Pathophysiology of the Cardiorenal Syndromes: Executive Summary from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contributions To Nephrology, 2013, 182, 82-98.	1.1	135
23	Incorporation of Biomarkers with the Renal Angina Index for Prediction of Severe AKI in Critically Ill Children. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 654-662.	4.5	125
24	Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Medicine, 2020, 46, 943-953.	8.2	120
25	Thiamin Deficiency in People with Obesity. Advances in Nutrition, 2015, 6, 147-153.	6.4	119
26	Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney International, 2014, 85, 431-438.	5.2	117
27	Implementation of Novel Biomarkers in the Diagnosis, Prognosis, and Management of Acute Kidney Injury: Executive Summary from the Tenth Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contributions To Nephrology, 2013, 182, 5-12.	1.1	105
28	Renin and Survival in Patients Given Angiotensin II for Catecholamine-Resistant Vasodilatory Shock. A Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1253-1261.	5. 6	101
29	Utilizing Electronic Health Records to Predict Acute Kidney Injury Risk and Outcomes: Workgroup Statements from the 15 th ADQI Consensus Conference. Canadian Journal of Kidney Health and Disease, 2016, 3, 99.	1.1	84
30	Ongoing Clinical Trials in AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 861-873.	4. 5	76
31	Surges of Electroencephalogram Activity at the Time of Death: A Case Series. Journal of Palliative Medicine, 2009, 12, 1095-1100.	1.1	70
32	Angiotensin I and angiotensin II concentrations and their ratio in catecholamine-resistant vasodilatory shock. Critical Care, 2020, 24, 43.	5.8	69
33	Off-Pump versus On-Pump Coronary Artery Bypass Grafting Outcomes Stratified by Preoperative Renal Function. Journal of the American Society of Nephrology: JASN, 2012, 23, 1389-1397.	6.1	68
34	Urinary Sediment Cast Scoring Index for Acute Kidney Injury: A Pilot Study. Nephron Clinical Practice, 2008, 110, c145-c150.	2.3	67
35	Proposal for a Functional Classification System of Heart Failure in Patients With End-Stage Renal Disease. Journal of the American College of Cardiology, 2014, 63, 1246-1252.	2.8	64
36	Urinary Angiotensinogen and Risk of Severe AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 184-193.	4 . 5	62

#	Article	IF	CITATIONS
37	Acute Kidney Injury Leading to Chronic Kidney Disease and Long-Term Outcomes of Acute Kidney Injury: The Best Opportunity to Mitigate Acute Kidney Injury?. Contributions To Nephrology, 2011, 174, 182-190.	1.1	51
38	Derivation of Urine Output Thresholds That Identify a Very High Risk of AKI in Patients with Septic Shock. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1168-1174.	4.5	50
39	Renal angina: concept and development of pretest probability assessment in acute kidney injury. Critical Care, 2015, 19, 93.	5.8	47
40	Neurogenic Pulmonary Edema. Chest, 2012, 141, 793-795.	0.8	41
41	Utilization of Small Changes in Serum Creatinine with Clinical Risk Factors to Assess the Risk of AKI in Critically III Adults. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 663-672.	4.5	38
42	Reference intervals of urinary acute kidney injury (AKI) markers [IGFBP7]â [™] [TIMP2] in apparently healthy subjects and chronic comorbid subjects without AKI. Clinica Chimica Acta, 2016, 452, 32-37.	1.1	38
43	Angiotensin converting enzyme defects in shock: implications for future therapy. Critical Care, 2018, 22, 274.	5.8	37
44	Renal Stress Testing in the Assessment of Kidney Disease. Kidney International Reports, 2016, 1, 57-63.	0.8	36
45	Sensitivity to angiotensin II dose in patients with vasodilatory shock: a prespecified analysis of the ATHOS-3 trial. Annals of Intensive Care, 2019, 9, 63.	4.6	36
46	Broad spectrum vasopressors: a new approach to the initial management of septic shock?. Critical Care, 2019, 23, 124.	5.8	36
47	Acute Kidney Disease to Chronic Kidney Disease. Critical Care Clinics, 2021, 37, 453-474.	2.6	36
48	Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury. Nephrology Dialysis Transplantation, 2016, 31, 1633-1640.	0.7	35
49	Anion gap, anion gap corrected for albumin, base deficit and unmeasured anions in critically ill patients: implications on the assessment of metabolic acidosis and the diagnosis of hyperlactatemia. BMC Emergency Medicine, 2008, 8, 18.	1.9	34
50	Timing of death after traumatic injuryâ€"a contemporary assessment of the temporal distribution of death. Journal of Surgical Research, 2016, 200, 604-609.	1.6	34
51	Causes and consequences of inflammation on anemia management in hemodialysis patients. Hemodialysis International, 2009, 13, 222-234.	0.9	33
52	Kinetic Changes of Plasma Renin Concentrations Predict Acute Kidney Injury in Cardiac Surgery Patients. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1119-1126.	5.6	32
53	Kidney attack versus heart attack: evolution of classification and diagnostic criteria. Lancet, The, 2013, 382, 939-940.	13.7	30
54	Association of Elevated Urinary Concentration of Renin-Angiotensin System Components and Severe AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 2043-2052.	4.5	30

#	Article	IF	CITATIONS
55	External validation of urinary C–C motif chemokine ligand 14 (CCL14) for prediction of persistent acute kidney injury. Critical Care, 2021, 25, 185.	5.8	29
56	Biomarkers are transforming our understanding of AKI. Nature Reviews Nephrology, 2012, 8, 68-70.	9.6	27
57	Impact of Acute Kidney Injury in Patients Hospitalized With Pneumonia. Critical Care Medicine, 2017, 45, 600-606.	0.9	27
58	The prognostic value of the furosemide stress test in predicting delayed graft function following deceased donor kidney transplantation. Biomarkers, 2018, 23, 61-69.	1.9	27
59	The use of angiotensin II in distributive shock. Critical Care, 2016, 20, 137.	5.8	26
60	A Clinical Approach to the Acute Cardiorenal Syndrome. Critical Care Clinics, 2015, 31, 685-703.	2.6	24
61	The furosemide stress test: current use and future potential. Renal Failure, 2021, 43, 830-839.	2.1	23
62	Fluid Management in Adults and Children: Core Curriculum 2014. American Journal of Kidney Diseases, 2014, 63, 700-712.	1.9	18
63	Characterization of end-of-life electroencephalographic surges in critically ill patients. Death Studies, 2017, 41, 385-392.	2.7	18
64	Nephrologist Follow-Up Care of Patients With Acute Kidney Disease Improves Outcomes: Taiwan Experience. Value in Health, 2020, 23, 1225-1234.	0.3	18
65	Therapeutic Opportunities for Hepcidin in Acute Care Medicine. Critical Care Clinics, 2019, 35, 357-374.	2.6	17
66	The Association Between Angiotensin II and Renin Kinetics in Patients After Cardiac Surgery. Anesthesia and Analgesia, 2022, 134, 1002-1009.	2.2	17
67	Performance of a Standardized Clinical Assay for Urinary C–C Motif Chemokine Ligand 14 (CCL14) for Persistent Severe Acute Kidney Injury. Kidney360, 2022, 3, 1158-1168.	2.1	13
68	Use of stress tests in evaluating kidney disease. Current Opinion in Nephrology and Hypertension, 2017, 26, 31-35.	2.0	11
69	Disentanglement of the acute kidney injury syndrome. Current Opinion in Critical Care, 2012, 18, 579-584.	3.2	10
70	High serum creatinine nonlinearity: a renal vital sign?. American Journal of Physiology - Renal Physiology, 2016, 311, F305-F309.	2.7	9
71	Sequelae of AKI. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2017, 31, 415-425.	4.0	9
72	Kidney attack must be prevented. Nature Reviews Nephrology, 2013, 9, 198-199.	9.6	7

#	Article	IF	CITATIONS
73	Why the renin–angiotensin–aldosterone system (RAAS) in critically ill patients can no longer be ignored. Critical Care, 2021, 25, 389.	5.8	7
74	Biomarkers in Cardiorenal Syndrome. Blood Purification, 2014, 37, 14-19.	1.8	6
75	Understanding renal recovery. Intensive Care Medicine, 2017, 43, 924-926.	8.2	6
76	Predicting acute kidney injury prognosis. Current Opinion in Nephrology and Hypertension, 2016, 25, 226-231.	2.0	5
77	The Expanding Role of the Nephrologist in the Intensive Care Unit. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 545.	4.5	3
78	Glomerular Filtration Rate, Renal Functional Reserve, and Kidney Stress Testing., 2019,, 48-59.e2.		3
79	Single Lumen Alternating Micro-Batch Hemodiafiltration (SLAMB-HDF): A Device for Minimally Invasive Renal Replacement Therapy. Kidney360, 2020, 1, 969-973.	2.1	2
80	Permissive azotemia during acute kidney injury enables more rapid renal recovery and less renal fibrosis: a hypothesis and clinical development plan. Critical Care, 2022, 26, 116.	5.8	2
81	Acute Kidney Injury and CKD: No Respite for a Weary Kidney. American Journal of Kidney Diseases, 2015, 66, 552-554.	1.9	1