
Guang-Lei Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/472673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyurethane-based polymer electrolytes for lithium Batteries: Advances and perspectives. Chemical Engineering Journal, 2022, 430, 132659.	6.6	45
2	Uncovering the critical impact of the solid electrolyte interphase structure on the interfacial stability. InformaÄnÃ-Materiály, 2022, 4, .	8.5	19
3	Eutectic Crystallization Activates Solidâ€State Zincâ€Ion Conduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
4	Eutectic Crystallization Activates Solidâ \in State Zincâ \in Ion Conduction. Angewandte Chemie, 2022, 134, .	1.6	2
5	In situ generated polymer electrolyte coating-based Janus interfaces for long-life LAGP-based NMC811/Li metal batteries. Chemical Engineering Journal, 2022, 433, 133589.	6.6	22
6	lâ€containing Polymer/Alloy Layerâ€Based Li Anode Mediating Highâ€Performance Lithium–Air Batteries. Advanced Functional Materials, 2022, 32, 2108993.	7.8	20
7	Highly Fluorinated Al-Centered Lithium Salt Boosting the Interfacial Compatibility of Li-Metal Batteries. ACS Energy Letters, 2022, 7, 591-598.	8.8	34
8	Functional Applications of Polymer Electrolytes in Highâ€Energyâ€Density Lithium Batteries. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	11
9	A PF ₆ ^{â^'} â€Permselective Polymer Electrolyte with Anion Solvation Regulation Enabling Longâ€Cycle Dualâ€ion Battery. Advanced Materials, 2022, 34, e2108665.	11.1	35
10	Inhibiting Ion Migration by Guanidinium Cation Doping for Efficient Perovskite Solar Cells with Enhanced Operational Stability. Solar Rrl, 2022, 6, .	3.1	5
11	Challenges of prelithiation strategies for next generation high energy lithium-ion batteries. Energy Storage Materials, 2022, 47, 297-318.	9.5	74
12	Clarifying the Electroâ€Chemoâ€Mechanical Coupling in Li ₁₀ SnP ₂ S ₁₂ based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2022, 12, .	10.2	33
13	Insights into Indigo K ⁺ Association in a Half-Slurry Flow Battery. ACS Energy Letters, 2022, 7, 1178-1186.	8.8	7
14	Electrolyte formulation strategies for potassiumâ€based batteries. Exploration, 2022, 2, .	5.4	18
15	A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. EScience, 2022, 2, 201-208.	25.0	65
16	Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell. Joule, 2022, 6, 850-860.	11.7	70
17	Thermal runaway routes of large-format lithium-sulfur pouch cell batteries. Joule, 2022, 6, 906-922.	11.7	58
18	Pressure-Assisted Space-Confinement Strategy to Eliminate PbI ₂ in Perovskite Layers toward Improved Operational Stability. ACS Applied Materials & Interfaces, 2022, 14, 12442-12449.	4.0	6

#	Article	IF	CITATIONS
19	Singleâ€Ionâ€Functionalized Nanocellulose Membranes Enable Leanâ€Electrolyte and Deeply Cycled Aqueous Zincâ€Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	63
20	An Endotenon Sheath-Inspired Double-Network Binder Enables Superior Cycling Performance of Silicon Electrodes. Nano-Micro Letters, 2022, 14, 87.	14.4	31
21	A Bifunctional Chemomechanics Strategy To Suppress Electrochemo-Mechanical Failure of Ni-Rich Cathodes for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17674-17681.	4.0	23
22	Recent advances of newly designed in-situ polymerized electrolyte for high energy density/safe solid Li metal batteries. Current Opinion in Electrochemistry, 2022, 33, 100962.	2.5	6
23	A melatonin-inspired coating as an electrolyte preservative for layered oxide cathode-based lithium batteries. Chemical Engineering Journal, 2022, 437, 135032.	6.6	7
24	A delicately designed functional binder enabling in situ construction of <scp>3D</scp> crossâ€linking robust network for highâ€performance Si/graphite composite anode. Journal of Polymer Science, 2022, 60, 1835-1844.	2.0	8
25	Delicately Tailored Ternary Phosphate Electrolyte Promotes Ultrastable Cycling of Na ₃ V ₂ (PO ₄) ₂ F ₃ -Based Sodium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17444-17453.	4.0	20
26	Chargeâ€Compensation in a Displacement Mg ²⁺ Storage Cathode through Polyselenideâ€Mediated Anion Redox. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
27	Chargeâ€Compensation in a Displacement Mg ²⁺ Storage Cathode through Polyselenideâ€Mediated Anion Redox. Angewandte Chemie, 2022, 134, .	1.6	1
28	Polymer Electrolytes toward Nextâ€Generation Batteries. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	7
29	An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries. Science China Chemistry, 2022, 65, 934-942.	4.2	22
30	Interfacial chemistry of vinylphenol-grafted PVDF binder ensuring compatible cathode interphase for lithium batteries. Chemical Engineering Journal, 2022, 446, 136798.	6.6	11
31	A self-purifying electrolyte enables high energy Li ion batteries. Energy and Environmental Science, 2022, 15, 3331-3342.	15.6	40
32	Stimulus-responsive polymers for safe batteries and smart electronics. Science China Materials, 2022, 65, 2060-2071.	3.5	10
33	A rigid-flexible coupling poly(vinylene carbonate) based cross-linked network: A versatile polymer platform for solid-state polymer lithium batteries. Energy Storage Materials, 2022, 50, 525-532.	9.5	27
34	Unshackling the reversible capacity of SiOx/graphite-based full cells via selective LiF-induced lithiation. Science China Materials, 2022, 65, 2335-2342.	3.5	13
35	Percolated Sulfide in Saltâ€Concentrated Polymer Matrices Extricating Highâ€Voltage Allâ€Solidâ€State Lithiumâ€metal Batteries. Advanced Science, 2022, 9, .	5.6	24
36	Epitaxial Electrocrystallization of Magnesium <i>via</i> Synergy of Magnesiophilic Interface, Lattice Matching, and Electrostatic Confinement. ACS Nano, 2022, 16, 9894-9907.	7.3	26

#	Article	IF	CITATIONS
37	Cyanoethyl celluloseâ€based eutectogel electrolyte enabling highâ€voltageâ€tolerant and ionâ€conductive solidâ€state lithium metal batteries. , 2022, 4, 1093-1106.		17
38	A polysulfide radical anions scavenging binder achieves longâ€life lithium–sulfur batteries. , 2022, 1, .		22
39	High area-capacity Mg batteries enabled by sulfur/copper integrated cathode design. Journal of Energy Chemistry, 2022, 72, 370-378.	7.1	9
40	Robust Selfâ€Standing Singleâ€ion Polymer Electrolytes Enabling Highâ€Safety Magnesium Batteries at Elevated Temperature. Advanced Energy Materials, 2022, 12, .	10.2	19
41	Synergistic Double Cross-Linked Dynamic Network of Epoxidized Natural Rubber/Glycinamide Modified Polyacrylic Acid for Silicon Anode in Lithium Ion Battery: High Peel Strength and Super Cycle Stability. ACS Applied Materials & Interfaces, 2022, 14, 33315-33327.	4.0	13
42	Water-Locked Eutectic Electrolyte Enables Long-Cycling Aqueous Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 33041-33051.	4.0	21
43	Uneven Stripping Behavior, an UnheededÂKiller of Mg Anodes. Advanced Materials, 2022, 34, .	11.1	25
44	Enhance Photothermal Stability of Hybrid Perovskite Materials by Inhibiting Intrinsic Ion Migration. Solar Rrl, 2022, 6, .	3.1	3
45	Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohydrate Polymers, 2021, 251, 116975.	5.1	72
46	A Lowâ€Temperature Additiveâ€Involved Leaching Method for Highly Efficient Inorganic Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, .	10.2	32
47	Polymer electrolytes for Li-S batteries: Polymeric fundamentals and performance optimization. Journal of Energy Chemistry, 2021, 58, 300-317.	7.1	37
48	Structural Properties and Stability of Inorganic CsPbI ₃ Perovskites. Small Structures, 2021, 2, 2000089.	6.9	39
49	In-situ formed all-amorphous poly (ethylene oxide)-based electrolytes enabling solid-state Zn electrochemistry. Chemical Engineering Journal, 2021, 417, 128096.	6.6	28
50	Macromolecular Design of Lithium Conductive Polymer as Electrolyte for Solidâ€ S tate Lithium Batteries. Small, 2021, 17, e2005762.	5.2	85
51	Facilitated magnesium atom adsorption and surface diffusion kinetics <i>via</i> artificial bismuth-based interphases. Chemical Communications, 2021, 57, 9430-9433.	2.2	15
52	<i>In situ</i> built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy and Environmental Science, 2021, 14, 3609-3620.	15.6	300
53	The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 7770-7776.	7.2	58
54	The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 7849-7855.	1.6	18

#	Article	IF	CITATIONS
55	Anti-corrosive Hybrid Electrolytes for Rechargeable Aqueous Zinc Batteries. Chemical Research in Chinese Universities, 2021, 37, 328-334.	1.3	5
56	In Situ Polymerization Permeated Threeâ€Dimensional Li ⁺ â€Percolated Porous Oxide Ceramic Framework Boosting All Solid‣tate Lithium Metal Battery. Advanced Science, 2021, 8, 2003887.	5.6	102
57	Facile Design of Sulfideâ€Based all Solidâ€State Lithium Metal Battery: In Situ Polymerization within Selfâ€Supported Porous Argyrodite Skeleton. Advanced Functional Materials, 2021, 31, 2101523.	7.8	77
58	Dual-Functional Additive to Simultaneously Modify the Interface and Grain Boundary for Highly Efficient and Hysteresis-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 20043-20050.	4.0	21
59	Uniform Magnesium Electrodeposition via Synergistic Coupling of Current Homogenization, Geometric Confinement, and Chemisorption Effect. Advanced Materials, 2021, 33, e2100224.	11.1	58
60	How Do Polymer Binders Assist Transition Metal Oxide Cathodes to Address the Challenge of High-Voltage Lithium Battery Applications?. Electrochemical Energy Reviews, 2021, 4, 545-565.	13.1	53
61	Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Materials, 2021, 37, 215-223.	9.5	76
62	Uncovering LiH Triggered Thermal Runaway Mechanism of a Highâ€Energy LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ /Graphite Pouch Cell. Advanced Science, 2021, 8, e2100676.	5.6	48
63	Formulating a Non-Flammable Highly Concentrated Dual-Salt Electrolyte for Wide Temperature High-Nickel Lithium Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 050511.	1.3	15
64	Bidirectionally Compatible Buffering Layer Enables Highly Stable and Conductive Interface for 4.5ÂV Sulfideâ€Based Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2021, 11, 2100881.	10.2	50
65	Leakageâ€Proof Electrolyte Chemistry for a Highâ€Performance Lithium–Sulfur Battery. Angewandte Chemie, 2021, 133, 16623-16627.	1.6	0
66	Leakageâ€Proof Electrolyte Chemistry for a Highâ€Performance Lithium–Sulfur Battery. Angewandte Chemie - International Edition, 2021, 60, 16487-16491.	7.2	29
67	A reliable gel polymer electrolyte enables stable cycling of rechargeable aluminum batteries in a wide-temperature range. Journal of Power Sources, 2021, 497, 229839.	4.0	26
68	Toward Lowâ€Temperature Lithium Batteries: Advances and Prospects of Unconventional Electrolytes. Advanced Energy and Sustainability Research, 2021, 2, 2100039.	2.8	17
69	A Bismuth-Based Protective Layer for Magnesium Metal Anode in Noncorrosive Electrolytes. ACS Energy Letters, 2021, 6, 2594-2601.	8.8	96
70	A rigid-flexible coupling gel polymer electrolyte towards high safety flexible Li-Ion battery. Journal of Power Sources, 2021, 499, 229944.	4.0	14
71	Machine Learning Boosting the Development of Advanced Lithium Batteries. Small Methods, 2021, 5, e2100442.	4.6	27
72	â€~V' Shape A–D–Aâ€Type Designed Small Hole Conductors for Efficient Indoor and Outdoor Staging fi	$rom_{3.1}$	10

a€ Va€™ Shape Aa€"Da€"Aa€ ype Designed Small Hole Conductors for Efficient Indoor a Solid Dyeâ€Sensitized Solar Cells and Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100206.

5

#	Article	IF	CITATIONS
73	Polymer Electrolytes – New Opportunities for the Development of Multivalent Ion Batteries. Chemistry - an Asian Journal, 2021, 16, 3272-3280.	1.7	10
74	Crucial Challenges and Recent Optimization Progress of Metal–Sulfur Battery Electrolytes. Energy & Fuels, 2021, 35, 1966-1988.	2.5	26
75	Bioinspired Antiaging Binder Additive Addressing the Challenge of Chemical Degradation of Electrolyte at Cathode/Electrolyte Interphase. Journal of the American Chemical Society, 2021, 143, 18041-18051.	6.6	38
76	Unraveling H ⁺ /Zn ²⁺ Sequential Conversion Reactions in Tellurium Cathodes for Rechargeable Aqueous Zinc Batteries. Journal of Physical Chemistry Letters, 2021, 12, 10163-10168.	2.1	19
77	Current Design Strategies for Rechargeable Magnesium-Based Batteries. ACS Nano, 2021, 15, 15594-15624.	7.3	89
78	Interfacial chemistry of γ-glutamic acid derived block polymer binder directing the interfacial compatibility of high voltage LiNi0.5Mn1.5O4 electrode. Science China Chemistry, 2021, 64, 92-100.	4.2	8
79	A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries. Energy Storage Materials, 2020, 25, 756-763.	9.5	59
80	Formulierung von Elektrolyten mit gemischten Lithiumsalzen für Lithiumâ€Batterien. Angewandte Chemie, 2020, 132, 3426-3442.	1.6	16
81	Formulation of Blendedâ€Lithiumâ€Salt Electrolytes for Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 3400-3415.	7.2	129
82	Highly Safe Electrolyte Enabled via Controllable Polysulfide Release and Efficient Conversion for Advanced Lithium–Sulfur Batteries. Small, 2020, 16, e1905737.	5.2	60
83	An interfacially self-reinforced polymer electrolyte enables long-cycle 5.35 V dual-ion batteries. Journal of Materials Chemistry A, 2020, 8, 1451-1456.	5.2	19
84	A Stable Solid Electrolyte Interphase for Magnesium Metal Anode Evolved from a Bulky Anion Lithium Salt. Advanced Materials, 2020, 32, e1904987.	11.1	123
85	A Temperatureâ€Responsive Electrolyte Endowing Superior Safety Characteristic of Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903441.	10.2	95
86	Chemical Composition and Phase Evolution in DMAI-Derived Inorganic Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 263-270.	8.8	114
87	Frontier Orbital Energy-Customized Ionomer-Based Polymer Electrolyte for High-Voltage Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 51374-51386.	4.0	21
88	High Polymerization Conversion and Stable High-Voltage Chemistry Underpinning an In Situ Formed Solid Electrolyte. Chemistry of Materials, 2020, 32, 9167-9175.	3.2	81
89	A High-Energy 5 V-Class Flexible Lithium-Ion Battery Endowed by Laser-Drilled Flexible Integrated Graphite Film. ACS Applied Materials & Interfaces, 2020, 12, 9468-9477.	4.0	10
90	In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nature Communications, 2020, 11, 5889.	5.8	145

#	Article	IF	CITATIONS
91	A Novel Regulation Strategy of Solid Electrolyte Interphase Based on Anionâ€Solvent Coordination for Magnesium Metal Anode. Small, 2020, 16, e2005424.	5.2	39
92	A temperature gradient-induced directional growth of a perovskite film. Journal of Materials Chemistry A, 2020, 8, 17019-17024.	5.2	7
93	Selfâ€Assembled Solidâ€State Gel Catholyte Combating Iodide Diffusion and Selfâ€Discharge for a Stable Flexible Aqueous Zn–I ₂ Battery. Advanced Energy Materials, 2020, 10, 2001997.	10.2	86
94	Anion Solvation Reconfiguration Enables Highâ€Voltage Carbonate Electrolytes for Stable Zn/Graphite Cells. Angewandte Chemie, 2020, 132, 21953-21961.	1.6	11
95	Anion Solvation Reconfiguration Enables Highâ€Voltage Carbonate Electrolytes for Stable Zn/Graphite Cells. Angewandte Chemie - International Edition, 2020, 59, 21769-21777.	7.2	58
96	LiDFOB Initiated In Situ Polymerization of Novel Eutectic Solution Enables Roomâ€Temperature Solid Lithium Metal Batteries. Advanced Science, 2020, 7, 2003370.	5.6	76
97	Organic Ionic Plastic Crystals as Hole Transporting Layer for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2001460.	7.8	27
98	Cs ₄ PbI ₆ â€Mediated Synthesis of Thermodynamically Stable FA _{0.15} Cs _{0.85} PbI ₃ Perovskite Solar Cells. Advanced Materials, 2020, 32, e2001054.	11.1	41
99	Revealing the multilevel thermal safety of lithium batteries. Energy Storage Materials, 2020, 31, 72-86.	9.5	94
100	Investigation of the cathodic interfacial stability of a nitrile electrolyte and its performance with a high-voltage LiCoO ₂ cathode. Chemical Communications, 2020, 56, 4998-5001.	2.2	26
101	Selectively Wetted Rigid–Flexible Coupling Polymer Electrolyte Enabling Superior Stability and Compatibility of Highâ€Voltage Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903939.	10.2	123
102	Perovskite Solution Aging: What Happened and How to Inhibit?. CheM, 2020, 6, 1369-1378.	5.8	112
103	Fast anion intercalation into graphite cathode enabling high-rate rechargeable zinc batteries. Journal of Power Sources, 2020, 457, 227994.	4.0	42
104	A Polymerâ€Reinforced SEI Layer Induced by a Cyclic Carbonateâ€Based Polymer Electrolyte Boosting 4.45 V LiCoO ₂ /Li Metal Batteries. Small, 2020, 16, e1907163.	5.2	47
105	Poly(maleic anhydride) copolymersâ€based polymer electrolytes enlighten highly safe and highâ€energyâ€density lithium metal batteries: Advances and prospects. Nano Select, 2020, 1, 59-78.	1.9	8
106	Review—In Situ Polymerization for Integration and Interfacial Protection Towards Solid State Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 070527.	1.3	75
107	Nonflammable Nitrile Deep Eutectic Electrolyte Enables High-Voltage Lithium Metal Batteries. Chemistry of Materials, 2020, 32, 3405-3413.	3.2	145
108	Janus Polymer Composite Electrolytes Improve the Cycling Performance of Lithium–Oxygen Battery. ACS Applied Materials & Interfaces, 2020, 12, 12857-12866.	4.0	11

#	Article	IF	CITATIONS
109	Uncovering the Potential of M1â€Siteâ€Activated NASICON Cathodes for Znâ€Ion Batteries. Advanced Materials, 2020, 32, e1907526.	11.1	103
110	Insights into interfacial speciation and deposition morphology evolution at Mg-electrolyte interfaces under practical conditions. Journal of Energy Chemistry, 2020, 48, 299-307.	7.1	31
111	A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries. Electrochimica Acta, 2020, 337, 135843.	2.6	43
112	Ionicâ€Associationâ€Assisted Viscoelastic Nylon Electrolytes Enable Synchronously Coupled Interface for Solid Batteries. Advanced Functional Materials, 2020, 30, 2000347.	7.8	44
113	Highly Reversible Cuprous Mediated Cathode Chemistry for Magnesium Batteries. Angewandte Chemie, 2020, 132, 11574-11579.	1.6	14
114	Highly Reversible Cuprous Mediated Cathode Chemistry for Magnesium Batteries. Angewandte Chemie - International Edition, 2020, 59, 11477-11482.	7.2	67
115	Electrolyte Therapy for Improving the Performance of LiNi _{0.5} Mn _{1.5} O ₄ Cathodes Assembled Lithium–Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 21368-21385.	4.0	38
116	Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca–CeO ₂ /LiTFSI/PEO Composite Electrolyte for Highâ€Rate and Highâ€Voltage Allâ€Solidâ€State Battery. Advanced Energy Materials, 2020, 10, 2000049.	10.2	252
117	Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 51, 154-160.	7.1	53
118	Reasonable Design of High-Energy-Density Solid-State Lithium-Metal Batteries. Matter, 2020, 2, 805-815.	5.0	130
119	Pursuit of reversible Zn electrochemistry: a time-honored challenge towards low-cost and green energy storage. NPG Asia Materials, 2020, 12, .	3.8	129
120	A polar-hydrophobic ionic liquid induces grain growth and stabilization in halide perovskites. Chemical Communications, 2019, 55, 11059-11062.	2.2	35
121	A large π-conjugated tetrakis (4-carboxyphenyl) porphyrin anode enables high specific capacity and superior cycling stability in lithium-ion batteries. Chemical Communications, 2019, 55, 11370-11373.	2.2	30
122	Intermolecular Chemistry in Solid Polymer Electrolytes for Highâ€Energyâ€Density Lithium Batteries. Advanced Materials, 2019, 31, e1902029.	11.1	543
123	Concentrated electrolyte boosting high-temperature cycling stability of LiCoO ₂ /graphite cell. Chemical Communications, 2019, 55, 9785-9788.	2.2	16
124	Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials. Chemistry of Materials, 2019, 31, 6033-6065.	3.2	164
125	A high concentration electrolyte enables superior cycleability and rate capability for high voltage dual graphite battery. Journal of Power Sources, 2019, 437, 226942.	4.0	43
126	Polymer Electrolyte Enlightens Wide-Temperature 4.45ÂV-Class LiCoO ₂ /Li Metal Battery. Journal of the Electrochemical Society, 2019, 166, A2313-A2321.	1.3	11

#	Article	IF	CITATIONS
127	Overcoming the Challenges of 5 V Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathodes with Solid Polymer Electrolytes. ACS Energy Letters, 2019, 4, 2871-2886.	8.8	114
128	Deciphering the Interface of a Highâ€Voltage (5 Vâ€Class) Liâ€Ion Battery Containing Additiveâ€Assisted Sulfolaneâ€Based Electrolyte. Small Methods, 2019, 3, 1900546.	4.6	33
129	Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a Highâ€Voltage Solidâ€5tate Lithium Metal Battery. Advanced Science, 2019, 6, 1901036.	5.6	202
130	Spontaneous Interface Ion Exchange: Passivating Surface Defects of Perovskite Solar Cells with Enhanced Photovoltage. Advanced Energy Materials, 2019, 9, 1902142.	10.2	63
131	A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries. Energy and Environmental Science, 2019, 12, 273-280.	15.6	94
132	Functional additives assisted ester-carbonate electrolyte enables wide temperature operation of a high-voltage (5â€V-Class) Li-ion battery. Journal of Power Sources, 2019, 416, 29-36.	4.0	70
133	Polymer Electrolytes for High Energy Density Ternary Cathode Material-Based Lithium Batteries. Electrochemical Energy Reviews, 2019, 2, 128-148.	13.1	106
134	A novel single-ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated-temperature sodium metal batteries. Solid State Ionics, 2019, 337, 140-146.	1.3	36
135	Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy and Environmental Science, 2019, 12, 1938-1949.	15.6	1,309
136	A Novel Bifunctional Self‧tabilized Strategy Enabling 4.6 V LiCoO ₂ with Excellent Longâ€Term Cyclability and Highâ€Rate Capability. Advanced Science, 2019, 6, 1900355.	5.6	164
137	Safety-Enhanced Polymer Electrolytes for Sodium Batteries: Recent Progress and Perspectives. ACS Applied Materials & Interfaces, 2019, 11, 17109-17127.	4.0	100
138	Fast magnesiation kinetics in α-Ag ₂ S nanostructures enabled by an <i>in situ</i> generated silver matrix. Chemical Communications, 2019, 55, 4431-4434.	2.2	30
139	Additiveâ€Assisted Novel Dualâ€6alt Electrolyte Addresses Wide Temperature Operation of Lithium–Metal Batteries. Small, 2019, 15, e1900269.	5.2	107
140	Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Research, 2019, 12, 2230-2237.	5.8	47
141	Fluorescence Probing of Active Lithium Distribution in Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 5936-5940.	7.2	35
142	Fluorescence Probing of Active Lithium Distribution in Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 5997-6001.	1.6	8
143	A Crosslinked Polytetrahydrofuranâ€Borateâ€Based Polymer Electrolyte Enabling Wideâ€Workingâ€Temperatureâ€Range Rechargeable Magnesium Batteries. Advanced Materials, 2019, 31, e1805930.	11.1	95
144	An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. Journal of Materials Chemistry A, 2019, 7, 5295-5304.	5.2	71

#	Article	IF	CITATIONS
145	An In Situ Interface Reinforcement Strategy Achieving Long Cycle Performance of Dualâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1804022.	10.2	92
146	A Scalable Methylamine Gas Healing Strategy for Highâ€Efficiency Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 5587-5591.	7.2	121
147	A well-designed water-soluble binder enlightening the 5 V-class LiNi _{0.5} Mn _{1.5} O ₄ cathodes. Journal of Materials Chemistry A, 2019, 7, 24594-24601.	5.2	38
148	Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nature Communications, 2019, 10, 5374.	5.8	573
149	"Water-in-deep eutectic solvent―electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57, 625-634.	8.2	467
150	Small things make big deal: Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Materials, 2019, 20, 146-175.	9.5	118
151	An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries. Electrochimica Acta, 2019, 299, 820-827.	2.6	83
152	A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy and Environmental Science, 2018, 11, 1197-1203.	15.6	273
153	A promising bulky anion based lithium borate salt for lithium metal batteries. Chemical Science, 2018, 9, 3451-3458.	3.7	56
154	A phase inversion based sponge-like polysulfonamide/SiO 2 composite separator for high performance lithium-ion batteries. Chinese Journal of Chemical Engineering, 2018, 26, 1292-1299.	1.7	22
155	Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13588-13597.	4.0	110
156	Batteries: Prescribing Functional Additives for Treating the Poor Performances of Highâ€Voltage (5) Tj ETQq0 0 C	rgBT /Ove 10.2	erlock 10 Tf 5 10
157	Graphene-wrapped iron carbide nanoparticles as Pt-free counter electrode towards dye-sensitized solar cells via magnetic field induced self-assembly. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 48-54.	2.0	5
158	Multifunctional Sandwich‧tructured Electrolyte for Highâ€Performance Lithium–Sulfur Batteries. Advanced Science, 2018, 5, 1700503.	5.6	99
159	Stable cycling of lithium-sulfur battery enabled by a reliable gel polymer electrolyte rich in ester groups. Journal of Membrane Science, 2018, 550, 399-406.	4.1	65
160	Cu2GeS3 derived ultrafine nanoparticles as high-performance anode for sodium ion battery. Science China Materials, 2018, 61, 1177-1184.	3.5	23
161	Progress and prospect on failure mechanisms of solid-state lithium batteries. Journal of Power Sources, 2018, 392, 94-115.	4.0	151
162	Prescribing Functional Additives for Treating the Poor Performances of Highâ€Voltage (5 Vâ€class) LiNi _{0.5} Mn _{1.5} O ₄ /MCMB Liâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1701398.	10.2	160

#	Article	IF	CITATIONS
163	Selfâ€Established Rapid Magnesiation/Deâ€Magnesiation Pathways in Binary Selenium–Copper Mixtures with Significantly Enhanced Mgâ€Ion Storage Reversibility. Advanced Functional Materials, 2018, 28, 1701718.	7.8	71
164	Inorganic separators enable significantly suppressed polysulfide shuttling in high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 23720-23729.	5.2	52
165	Tracing the Impact of Hybrid Functional Additives on a High-Voltage (5 V-class) SiO _{<i>x</i>} -C/LiNi _{0.5} Mn _{1.5} O ₄ Li-Ion Battery System. Chemistry of Materials, 2018, 30, 8291-8302.	3.2	70
166	Lithium Ion Capacitors in Organic Electrolyte System: Scientific Problems, Material Development, and Key Technologies. Advanced Energy Materials, 2018, 8, 1801243.	10.2	207
167	Rigid–Flexible Coupling Polymer Electrolytes toward Highâ€Energy Lithium Batteries. Macromolecular Materials and Engineering, 2018, 303, 1800337.	1.7	43
168	Self-Stabilized Solid Electrolyte Interface on a Host-Free Li-Metal Anode toward High Areal Capacity and Rate Utilization. Chemistry of Materials, 2018, 30, 4039-4047.	3.2	87
169	A study on the interfacial stability of the cathode/polycarbonate interface: implication of overcharge and transition metal redox. Journal of Materials Chemistry A, 2018, 6, 11846-11852.	5.2	42
170	Ionic conductivity of infiltrated Ln (Ln = Gd, Sm, Y)-doped ceria. Rare Metals, 2018, 37, 734-742.	3.6	9
171	Strain tunable ionic transport properties and electrochemical window of Li10GeP2S12 superionic conductor. Computational Materials Science, 2018, 153, 170-175.	1.4	21
172	Rechargeable Magnesium Batteries using Conversionâ€īype Cathodes: A Perspective and Minireview. Small Methods, 2018, 2, 1800020.	4.6	135
173	Multifunctional Additives Improve the Electrolyte Properties of Magnesium Borohydride Toward Magnesium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23757-23765.	4.0	38
174	Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chemical Society Reviews, 2018, 47, 6505-6602.	18.7	407
175	Aliphatic Polycarbonateâ€Based Solidâ€5tate Polymer Electrolytes for Advanced Lithium Batteries: Advances and Perspective. Small, 2018, 14, e1800821.	5.2	131
176	The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. Journal of Power Sources, 2018, 397, 157-161.	4.0	94
177	Mesocarbon microbead based dual-carbon batteries towards low cost energy storage devices. Journal of Power Sources, 2018, 393, 145-151.	4.0	44
178	A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O ₂ batteries. RSC Advances, 2018, 8, 27973-27978.	1.7	5
179	Dendriteâ€Free Lithium Deposition via Flexibleâ€Rigid Coupling Composite Network for LiNi _{0.5} Mn _{1.5} O ₄ /Li Metal Batteries. Small, 2018, 14, e1802244.	5.2	83
180	A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes. Scientific Reports, 2017, 7, 41217.	1.6	60

#	Article	IF	CITATIONS
181	Ionic liquid-based electrolyte with dual-functional LiDFOB additive toward high-performance LiMn2O4 batteries. Ionics, 2017, 23, 1399-1406.	1.2	12
	High-voltage and free-standing poly(propylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 712 Td (carbonate)/Li <sub< td=""><td>>6.75<td>b>La_{3<}</td></td></sub<>	>6.75 <td>b>La_{3<}</td>	b>La _{3<}
182	composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. Journal of Materials Chemistry A, 2017, 5, 4940-4948.	5.2	373
183	Grapheneâ€Encapsulated Copper tin Sulfide Submicron Spheres as Highâ€Capacity Binderâ€Free Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 1124-1129.	1.7	27
184	Novel Design Concepts of Efficient Mgâ€lon Electrolytes toward Highâ€Performance Magnesium–Selenium and Magnesium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602055.	10.2	231
185	An α-CrPO ₄ -type NaV ₃ (PO ₄) ₃ anode for sodium-ion batteries with excellent cycling stability and the exploration of sodium storage behavior. Journal of Materials Chemistry A, 2017, 5, 3839-3847.	5.2	24
186	CH ₃ NH ₂ gas induced (110) preferred cesium-containing perovskite films with reduced Pbl ₆ octahedron distortion and enhanced moisture stability. Journal of Materials Chemistry A, 2017, 5, 4803-4808.	5.2	33
187	Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8737-8741.	4.0	122
188	An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. Journal of Materials Chemistry A, 2017, 5, 11124-11130.	5.2	89
189	A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angewandte Chemie - International Edition, 2017, 56, 7871-7875.	7.2	141
190	Poly(ethyl α-cyanoacrylate)-Based Artificial Solid Electrolyte Interphase Layer for Enhanced Interface Stability of Li Metal Anodes. Chemistry of Materials, 2017, 29, 4682-4689.	3.2	189
191	A Superior Polymer Electrolyte with Rigid Cyclic Carbonate Backbone for Rechargeable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17897-17905.	4.0	146
192	Li4Ti5O12-based energy conversion and storage systems: Status and prospects. Coordination Chemistry Reviews, 2017, 343, 139-184.	9.5	97
193	A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angewandte Chemie, 2017, 129, 7979-7983.	1.6	59
194	Conformal poly(ethyl α-cyanoacrylate) nano-coating for improving the interface stability of LiNi0.5Mn1.5O4. Electrochimica Acta, 2017, 236, 221-227.	2.6	27
195	Threeâ€Component Functional Additive in a LiPF ₆ â€Based Carbonate Electrolyte for a Highâ€Voltage LiCoO ₂ /Graphite Battery System. Energy Technology, 2017, 5, 1979-1989.	1.8	30
196	Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochimica Acta, 2017, 225, 151-159.	2.6	128
197	Graphene boosted Cu ₂ GeS ₃ for advanced lithium-ion batteries. Inorganic Chemistry Frontiers, 2017, 4, 541-546.	3.0	22
198	A Delicately Designed Sulfide Graphdiyne Compatible Cathode for Highâ€Performance Lithium/Magnesium–Sulfur Batteries. Small, 2017, 13, 1702277.	5.2	123

#	Article	IF	CITATIONS
199	A Rational Design of Highâ€Performance Sandwichâ€Structured Quasisolid State Li–O ₂ Battery with Redox Mediator. Advanced Materials Interfaces, 2017, 4, 1700693.	1.9	34
200	Li–O ₂ Cell with LiI(3-hydroxypropionitrile) ₂ as a Redox Mediator: Insight into the Working Mechanism of I [–] during Charge in Anhydrous Systems. Journal of Physical Chemistry Letters, 2017, 8, 4218-4225.	2.1	35
201	High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Selfâ€Catalyzed Strategy toward Facile Synthesis. Advanced Science, 2017, 4, 1700174.	5.6	155
202	An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy and Environmental Science, 2017, 10, 2616-2625.	15.6	227
203	A Strategy to Make High Voltage LiCoO ₂ Compatible with Polyethylene Oxide Electrolyte in All-Solid-State Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3454-A3461.	1.3	116
204	Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic) Tj ETQq0 (High-Voltage Batteries. ACS Applied Materials & Interfaces, 2017, 9, 41462-41472.	0 0 rgBT / 4.0	Overlock 10 63
205	An insight into intrinsic interfacial properties between Li metals and Li ₁₀ GeP ₂ S ₁₂ solid electrolytes. Physical Chemistry Chemical Physics, 2017, 19, 31436-31442.	1.3	49
206	Simultaneous Evolution of Uniaxially Oriented Grains and Ultralow-Density Grain-Boundary Network in CH ₃ NH ₃ Pbl ₃ Perovskite Thin Films Mediated by Precursor Phase Metastability. ACS Energy Letters, 2017, 2, 2727-2733.	8.8	82
207	In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries. Small, 2017, 13, 1601530.	5.2	58
208	In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO ₂ Lithium Batteries. Advanced Science, 2017, 4, 1600377.	5.6	377
209	Methylamine Gas Based Synthesis and Healing Process Toward Upscaling of Perovskite Solar Cells: Progress and Perspective. Solar Rrl, 2017, 1, 1700076.	3.1	40
210	Progress in nitrile-based polymer electrolytes for high performance lithium batteries. Journal of Materials Chemistry A, 2016, 4, 10070-10083.	5.2	243
211	Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high performance lithium ion capacitors. Electrochimica Acta, 2016, 196, 603-610.	2.6	94
212	Surface and Interface Issues in Spinel LiNi _{0.5} Mn _{1.5} O ₄ : Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries. Chemistry of Materials, 2016, 28, 3578-3606.	3.2	296
213	Novel cellulose/polyurethane composite gel polymer electrolyte for high performance lithium batteries. Electrochimica Acta, 2016, 215, 261-266.	2.6	58
214	High performance germanium-based anode materials. Coordination Chemistry Reviews, 2016, 326, 34-85.	9.5	79
215	All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016, 5, 139-164.	9.5	768
216	Recent Advances in Nonâ€Aqueous Electrolyte for Rechargeable Li–O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1600751.	10.2	149

#	Article	IF	CITATIONS
217	NaV3(PO4)3/C nanocomposite as novel anode material for Na-ion batteries with high stability. Nano Energy, 2016, 26, 382-391.	8.2	69
218	High energy density hybrid Mg ²⁺ /Li ⁺ battery with superior ultra-low temperature performance. Journal of Materials Chemistry A, 2016, 4, 2277-2285.	5.2	62
219	A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochimica Acta, 2016, 188, 23-30.	2.6	102
220	Nickel Disulfide–Graphene Nanosheets Composites with Improved Electrochemical Performance for Sodium Ion Battery. ACS Applied Materials & Interfaces, 2016, 8, 7811-7817.	4.0	179
221	Nitrogen-Doped Graphdiyne Applied for Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2016, 8, 8467-8473.	4.0	184
222	A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries. Journal of Materials Chemistry A, 2016, 4, 5191-5197.	5.2	76
223	Transformative Evolution of Organolead Triiodide Perovskite Thin Films from Strong Room-Temperature Solid–Gas Interaction between HPbl ₃ -CH ₃ NH ₂ Precursor Pair. Journal of the American Chemical Society, 2016, 138, 750-753.	6.6	156
224	A Carbon―and Binderâ€Free Nanostructured Cathode for Highâ€Performance Nonaqueous Liâ€O ₂ Battery. Advanced Science, 2015, 2, 1500092.	5.6	76
225	Safetyâ€Reinforced Poly(Propylene Carbonate)â€Based Allâ€Solidâ€State Polymer Electrolyte for Ambientâ€Temperature Solid Polymer Lithium Batteries. Advanced Energy Materials, 2015, 5, 1501082.	10.2	532
226	Methylamineâ€Gasâ€Induced Defectâ€Healing Behavior of CH ₃ NH ₃ Pbl ₃ Thin Films for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 9705-9709.	7.2	377
227	Controllable Formation of Niobium Nitride/Nitrogen-Doped Graphene Nanocomposites as Anode Materials for Lithium-Ion Capacitors. Particle and Particle Systems Characterization, 2015, 32, 1006-1011.	1.2	58
228	Rigid–Flexible Coupling High Ionic Conductivity Polymer Electrolyte for an Enhanced Performance of LiMn ₂ O ₄ /Graphite Battery at Elevated Temperature. ACS Applied Materials & Interfaces, 2015, 7, 4720-4727.	4.0	108
229	Strategies for improving the cyclability and thermo-stability of LiMn ₂ O ₄ -based batteries at elevated temperatures. Journal of Materials Chemistry A, 2015, 3, 4092-4123.	5.2	258
230	Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability. Scientific Reports, 2015, 5, 8335.	1.6	102
231	Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A, 2015, 3, 19205-19217.	5.2	145
232	Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries. Journal of Materials Chemistry A, 2015, 3, 7773-7779.	5.2	63
233	Functional lithium borate salts and their potential application in high performance lithium batteries. Coordination Chemistry Reviews, 2015, 292, 56-73.	9.5	90
234	Hierarchically Designed Germanium Microcubes with High Initial Coulombic Efficiency toward Highly Reversible Lithium Storage. Chemistry of Materials, 2015, 27, 2189-2194.	3.2	108

#	Article	IF	CITATIONS
235	A composite gel polymer electrolyte with high voltage cyclability for Ni-rich cathode of lithium-ion battery. Electrochemistry Communications, 2015, 61, 32-35.	2.3	37
236	Lithium storage in a highly conductive Cu ₃ Ge boosted Ge/graphene aerogel. Journal of Materials Chemistry A, 2015, 3, 22552-22556.	5.2	26
237	Ultrafast Alkaline Ni/Zn Battery Based on Ni-Foam-Supported Ni ₃ S ₂ Nanosheets. ACS Applied Materials & Interfaces, 2015, 7, 26396-26399.	4.0	173
238	Flexible graphite film with laser drilling pores as novel integrated anode free of metal current collector for sodium ion battery. Electrochemistry Communications, 2015, 61, 84-88.	2.3	42
239	Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li ₂ O ₂ for Liâ€O ₂ Batteries. Advanced Energy Materials, 2015, 5, 1400664.	10.2	32
240	Anticorrosive flexible pyrolytic polyimide graphite film as a cathode current collector in lithium bis(trifluoromethane sulfonyl) imide electrolyte. Electrochemistry Communications, 2014, 44, 70-73.	2.3	13
241	A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance. Solid State Ionics, 2014, 262, 747-753.	1.3	60
242	Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator. RSC Advances, 2014, 4, 7845.	1.7	134
243	NH ₂ CHâ•NH ₂ PbI ₃ : An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials, 2014, 26, 1485-1491.	3.2	516
244	A superior thermostable and nonflammable composite membrane towards high power battery separator. Nano Energy, 2014, 10, 277-287.	8.2	77
245	Nitrogen-doped carbon and iron carbide nanocomposites as cost-effective counter electrodes of dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 4676-4681.	5.2	50
246	RuSe/reduced graphene oxide: an efficient electrocatalyst for VO ²⁺ /VO ₂ ⁺ redox couples in vanadium redox flow batteries. RSC Advances, 2014, 4, 20379-20381.	1.7	31
247	Highâ€Performance Cobalt Selenide and Nickel Selenide Nanocomposite Counter Electrode for Both Iodide/Triiodide and Cobalt(II/III) Redox Couples in Dye‣ensitized Solar Cells. Chinese Journal of Chemistry, 2014, 32, 491-497.	2.6	31
248	A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures. Electrochimica Acta, 2014, 141, 167-172.	2.6	54
249	Insight into Enhanced Cycling Performance of Li–O2 Batteries Based on Binary CoSe2/CoO Nanocomposite Electrodes. Journal of Physical Chemistry Letters, 2014, 5, 615-621.	2.1	52
250	Cellulose/Polysulfonamide Composite Membrane as a High Performance Lithium-Ion Battery Separator. ACS Sustainable Chemistry and Engineering, 2014, 2, 194-199.	3.2	166
251	Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Scientific Reports, 2014, 4, 3935.	1.6	203
252	Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Scientific Reports, 2014, 4, 6272.	1.6	127

#	Article	IF	CITATIONS
253	Nitridated mesoporous Li4Ti5O12 spheres for high-rate lithium-ion batteries anode material. Journal of Solid State Electrochemistry, 2013, 17, 1479-1485.	1.2	28
254	Electrodeposition of nanostructured cobalt selenide films towards high performance counter electrodes in dye-sensitized solar cells. RSC Advances, 2013, 3, 16528.	1.7	71
255	A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics, 2013, 232, 44-48.	1.3	157
256	Nanostructured transition metal nitrides for energy storage and fuel cells. Coordination Chemistry Reviews, 2013, 257, 1946-1956.	9.5	309
257	Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries. Electrochimica Acta, 2013, 92, 132-138.	2.6	81
258	Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte. Journal of Materials Chemistry A, 2013, 1, 5949.	5.2	66
259	Renewable and Superior Thermal-Resistant Cellulose-Based Composite Nonwoven as Lithium-Ion Battery Separator. ACS Applied Materials & Interfaces, 2013, 5, 128-134.	4.0	317
260	Transition-metal nitride nanoparticles embedded in N-doped reduced graphene oxide: superior synergistic electrocatalytic materials for the counter electrodes of dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 3340.	5.2	60
261	A Heat-Resistant Silica Nanoparticle Enhanced Polysulfonamide Nonwoven Separator for High-Performance Lithium Ion Battery. Journal of the Electrochemical Society, 2013, 160, A769-A774.	1.3	46
262	A Core@sheath Nanofibrous Separator for Lithium Ion Batteries Obtained by Coaxial Electrospinning. Macromolecular Materials and Engineering, 2013, 298, 806-813.	1.7	48
263	A Core-Shell Structured Polysulfonamide-Based Composite Nonwoven Towards High Power Lithium Ion Battery Separator. Journal of the Electrochemical Society, 2013, 160, A1341-A1347.	1.3	67
264	Graphene nanosheet–titanium nitride nanocomposite for high performance electrochemical capacitors without extra conductive agent addition. Journal of Materials Chemistry, 2012, 22, 24918.	6.7	34
265	In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage. Journal of Materials Chemistry, 2012, 22, 4938.	6.7	79
266	Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 658-664.	4.0	331
267	Nitrogen-doped graphene nanosheets with excellent lithium storage properties. Journal of Materials Chemistry, 2011, 21, 5430.	6.7	686
268	Facile Preparation of Mesoporous Titanium Nitride Microspheres for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2011, 3, 93-98.	4.0	142
269	A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion. Biosensors and Bioelectronics, 2011, 26, 4088-4094.	5.3	34
270	A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochimica Acta, 2010, 55, 985-988.	2.6	77

#	Article	IF	CITATIONS
271	A Germanium–Carbon Nanocomposite Material for Lithium Batteries. Advanced Materials, 2008, 20, 3079-3083.	11.1	271