Chi-Hwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4726483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visibly Clear Radiative Cooling Metamaterials for Enhanced Thermal Management in Solar Cells and Windows. Advanced Functional Materials, 2022, 32, 2105882.	14.9	51
2	Fabrication of Skin-Mountable Flexible Sensor Patch for Monitoring of Swallowing Function. Methods in Molecular Biology, 2022, 2393, 863-876.	0.9	1
3	A Programmable Dualâ€Regime Spray for Largeâ€Scale and Customâ€Designed Electronic Textiles. Advanced Materials, 2022, 34, e2108021.	21.0	12

A Programmable Dualâ€Regime Spray for Largeâ€Scale and Customâ€Designed Electronic Textiles (Adv. Mater.) Tj ETQq0 0 0 rgBT /Ove

5	Buckled scalable intracellular bioprobes. Nature Nanotechnology, 2022, 17, 222-223.	31.5	0
6	Biodegradable silicon nanoneedles for ocular drug delivery. Science Advances, 2022, 8, eabn1772.	10.3	31
7	Smart Electronic Textiles for Wearable Sensing and Display. Biosensors, 2022, 12, 222.	4.7	26
8	All-printed stretchable corneal sensor on soft contact lenses for noninvasive and painless ocular electrodiagnosis. Nature Communications, 2021, 12, 1544.	12.8	41
9	Electrochemically active materials and wearable biosensors for the in situ analysis of body fluids for human healthcare. NPG Asia Materials, 2021, 13, .	7.9	46
10	Wearable Glucose Monitoring and Implantable Drug Delivery Systems for Diabetes Management. Advanced Healthcare Materials, 2021, 10, e2100194.	7.6	38
11	Replicable Quasi-Three-Dimensional Plasmonic Nanoantennas for Infrared Bandpass Filtering. ACS Applied Materials & Interfaces, 2021, 13, 24024-24031.	8.0	4
12	Rapid custom prototyping of soft poroelastic biosensor for simultaneous epicardial recording and imaging. Nature Communications, 2021, 12, 3710.	12.8	24
13	Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature, 2021, 597, 503-510.	27.8	120
14	Printing Flexible and Hybrid Electronics for Human Skin and Eyeâ€Interfaced Health Monitoring Systems. Advanced Materials, 2020, 32, e1902051.	21.0	83
15	Electrothermal soft manipulator enabling safe transport and handling of thin cell/tissue sheets and bioelectronic devices. Science Advances, 2020, 6, .	10.3	16
16	Fractal Web Design of a Hemispherical Photodetector Array with Organicâ€Dyeâ€Sensitized Graphene Hybrid Composites. Advanced Materials, 2020, 32, e2004456.	21.0	25
17	Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Science Advances, 2020, 6, eabb1093.	10.3	87
18	Bioresorbable, Miniaturized Porous Silicon Needles on a Flexible Water-Soluble Backing for Unobtrusive, Sustained Delivery of Chemotherapy. ACS Nano, 2020, 14, 7227-7236.	14.6	50

CHI-HWAN LEE

#	Article	IF	CITATIONS
19	Validation of a Novel Wearable Electromyography Patch for Monitoring Submental Muscle Activity During Swallowing: A Randomized Crossover Trial. Journal of Speech, Language, and Hearing Research, 2020, 63, 3293-3310.	1.6	19
20	Dual Regime Spray Deposition Based Laser Direct Writing of Metal Patterns on Polymer Substrates. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.7	5
21	Chemomechanics of transfer printing of thin films in a liquid environment. International Journal of Solids and Structures, 2019, 180-181, 30-44.	2.7	12
22	Deterministic Nanoassembly of Quasi-Three-Dimensional Plasmonic Nanoarrays with Arbitrary Substrate Materials and Structures. Nano Letters, 2019, 19, 5796-5805.	9.1	9
23	Soft-packaged sensory glove system for human-like natural interaction and control of prosthetic hands. NPG Asia Materials, 2019, 11, .	7.9	30
24	Sensor-Instrumented Scaffold Integrated with Microporous Spongelike Ultrabuoy for Long-Term 3D Mapping of Cellular Behaviors and Functions. ACS Nano, 2019, 13, 7898-7904.	14.6	8
25	Simple minimally-invasive automatic antidote delivery device (A2D2) towards closed-loop reversal of opioid overdose. Journal of Controlled Release, 2019, 306, 130-137.	9.9	22
26	Skin-Mountable Biosensors and Therapeutics: A Review. Annual Review of Biomedical Engineering, 2019, 21, 299-323.	12.3	45
27	Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science, 2019, 363, .	12.6	521
28	Flexible submental sensor patch with remote monitoring controls for management of oropharyngeal swallowing disorders. Science Advances, 2019, 5, eaay3210.	10.3	61
29	Battery-free, wireless sensors for full-body pressure and temperature mapping. Science Translational Medicine, 2018, 10, .	12.4	247
30	Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. ACS Nano, 2018, 12, 4164-4171.	14.6	36
31	Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules. Science Advances, 2018, 4, eaau6972.	10.3	39
32	Wafer-recyclable, environment-friendly transfer printing for large-scale thin-film nanoelectronics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7236-E7244.	7.1	43
33	Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch. Journal of Nanoscience and Nanotechnology, 2018, 18, 1611-1614.	0.9	5
34	(Invited) Wearable and Flexible Bio-Electronics Enabled By 'crack'-Driven Transfer Printing Methods. ECS Meeting Abstracts, 2018, , .	0.0	0
35	Dry Transient Electronic Systems by Use of Materials that Sublime. Advanced Functional Materials, 2017, 27, 1606008.	14.9	34
36	Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices. ACS Nano, 2017, 11, 6853-6859.	14.6	7

CHI-HWAN LEE

#	Article	IF	CITATIONS
37	Effect of Al2O3 Concentration on Density and Structure of (CaO-SiO2)-xAl2O3 Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1595-1601.	2.1	16

Transient Electronics: Dry Transient Electronic Systems by Use of Materials that Sublime (Adv. Funct.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

39	Multilayer Transfer Printing for Pixelated, Multicolor Quantum Dot Light-Emitting Diodes. ACS Nano, 2016, 10, 4920-4925.	14.6	115
40	High-Performance Ultrathin BiVO ₄ Photoanode on Textured Polydimethylsiloxane Substrates for Solar Water Splitting. ACS Energy Letters, 2016, 1, 68-75.	17.4	66
41	Mechanically Reinforced Skinâ€Electronics with Networked Nanocomposite Elastomer. Advanced Materials, 2016, 28, 10257-10265.	21.0	108
42	Smart Assembly for Soft Bioelectronics. IEEE Potentials, 2016, 35, 9-13.	0.3	2
43	Bioresorbable silicon electronic sensors for the brain. Nature, 2016, 530, 71-76.	27.8	778
44	Epidermal Systems: Soft Core/Shell Packages for Stretchable Electronics (Adv. Funct. Mater. 24/2015). Advanced Functional Materials, 2015, 25, 3697-3697.	14.9	6
45	Wireless Microfluidic Systems for Programmed, Functional Transformation of Transient Electronic Devices. Advanced Functional Materials, 2015, 25, 5100-5106.	14.9	37
46	Soft Core/Shell Packages for Stretchable Electronics. Advanced Functional Materials, 2015, 25, 3698-3704.	14.9	116
47	High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes. Nano Letters, 2015, 15, 969-973.	9.1	355
48	Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nature Communications, 2015, 6, 7381.	12.8	331
49	Soft network composite materials with deterministic and bio-inspired designs. Nature Communications, 2015, 6, 6566.	12.8	392
50	Biodegradable Elastomers and Silicon Nanomembranes/Nanoribbons for Stretchable, Transient Electronics, and Biosensors. Nano Letters, 2015, 15, 2801-2808.	9.1	281
51	Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method. Proceedings of SPIE, 2015, , .	0.8	0
52	Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Materials, 2015, 7, e227-e227.	7.9	80
53	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. Advanced Functional Materials, 2015, 25, 1338-1343.	14.9	41
54	Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Applied Physics Letters, 2014, 105, .	3.3	51

CHI-HWAN LEE

#	Article	IF	CITATIONS
55	Simultaneously Efficient Light Absorption and Charge Separation in WO ₃ /BiVO ₄ Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation. Nano Letters, 2014, 14, 1099-1105.	9.1	652
56	Sol-flame synthesis of cobalt-doped TiO ₂ nanowires with enhanced electrocatalytic activity for oxygen evolution reaction. Physical Chemistry Chemical Physics, 2014, 16, 12299-12306.	2.8	44
57	Rapid and Controllable Flame Reduction of TiO ₂ Nanowires for Enhanced Solar Water-Splitting. Nano Letters, 2014, 14, 24-31.	9.1	180
58	Transfer Printing Methods for Flexible Thin Film Solar Cells: Basic Concepts and Working Principles. ACS Nano, 2014, 8, 8746-8756.	14.6	89
59	Electroassisted Transfer of Vertical Silicon Wire Arrays Using a Sacrificial Porous Silicon Layer. Nano Letters, 2013, 13, 4362-4368.	9.1	33
60	Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nature Communications, 2013, 4, 1723.	12.8	249
61	Peel-and-Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin-film Electronics. Scientific Reports, 2013, 3, 2917.	3.3	59
62	Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates. Scientific Reports, 2012, 2, 1000.	3.3	66
63	Shrinking and Growing: Grain Boundary Density Reduction for Efficient Polysilicon Thin-Film Solar Cells. Nano Letters, 2012, 12, 6485-6491.	9.1	24
64	Fabrication of Flexible and Vertical Silicon Nanowire Electronics. Nano Letters, 2012, 12, 3339-3343.	9.1	107
65	Hybrid Si Microwire and Planar Solar Cells: Passivation and Characterization. Nano Letters, 2011, 11, 2704-2708.	9.1	151
66	Fabrication of Nanowire Electronics on Nonconventional Substrates by Water-Assisted Transfer Printing Method. Nano Letters, 2011, 11, 3435-3439.	9.1	98
67	Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation. Nano Letters, 2011, 11, 1300-1305.	9.1	73
68	Fabricating nanowire devices on diverse substrates by simple transfer-printing methods. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9950-9955.	7.1	123
69	Direct Growth of Nanowire Logic Gates and Photovoltaic Devices. Nano Letters, 2010, 10, 1050-1054.	9.1	29
70	Orientation-Controlled Alignment of Axially Modulated pn Silicon Nanowires. Nano Letters, 2010, 10, 5116-5122.	9.1	39
71	Probing Flow Velocity with Silicon Nanowire Sensors. Nano Letters, 2009, 9, 1984-1988.	9.1	72

Advanced Materials and Assembly Strategies for Wearable Biosensors: A Review. , 0, , .

2