Atsushi Kawakita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4724628/publications.pdf

Version: 2024-02-01

186265 233421 2,135 60 28 45 citations h-index g-index papers 60 60 60 1939 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5264-5267.	7.1	158
2	Nonuniform Concerted Evolution and Chloroplast Capture: Heterogeneity of Observed Introgression Patterns in Three Molecular Data Partition Phylogenies of Asian Mitella (Saxifragaceae). Molecular Biology and Evolution, 2005, 22, 285-296.	8.9	134
3	Evolution and Phylogenetic Utility of Alignment Gaps Within Intron Sequences of Three Nuclear Genes in Bumble Bees (Bombus). Molecular Biology and Evolution, 2003, 20, 87-92.	8.9	104
4	Repeated independent evolution of obligate pollination mutualism in the Phyllantheae– <i>Epicephala</i> association. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 417-426.	2.6	99
5	COSPECIATION ANALYSIS OF AN OBLIGATE POLLINATION MUTUALISM: HAVEGLOCHIDION TREES (EUPHORBIACEAE) AND POLLINATING EPICEPHALA MOTHS(GRACILLARIIDAE) DIVERSIFIED IN PARALLEL?. Evolution; International Journal of Organic Evolution, 2004, 58, 2201-2214.	2.3	82
6	Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Species Biology, 2010, 25, 3-19.	1.0	72
7	Chemical ecology of obligate pollination mutualisms: testing the †private channel†hypothesis in the ⟨i>Breynia⟨ i>â€"⟨i>Epicephala⟨ i>association. New Phytologist, 2010, 186, 995-1004.	7.3	71
8	Promises and challenges in insect–plant interactions. Entomologia Experimentalis Et Applicata, 2018, 166, 319-343.	1.4	66
9	Plantâ€pollinator interactions in New Caledonia influenced by introduced honey bees. American Journal of Botany, 2004, 91, 1814-1827.	1.7	65
10	Interspecific Variation of Floral Scent Composition in Glochidion and its Association with Host-specific Pollinating Seed Parasite (Epicephala). Journal of Chemical Ecology, 2007, 33, 1065-1081.	1.8	65
11	Selective flower abortion maintains moth cooperation in a newly discovered pollination mutualism. Ecology Letters, 2010, 13, 321-329.	6.4	63
12	Assessment of the diversity and species specificity of the mutualistic association between Epicephala moths and Glochidion trees. Molecular Ecology, 2006, 15, 3567-3581.	3.9	61
13	A molecular phylogeny and revised higherâ€level classification for the leafâ€mining moth family <scp>G</scp> racillariidae and its implications for larval hostâ€use evolution. Systematic Entomology, 2017, 42, 60-81.	3.9	61
14	Evolution of obligate pollination mutualism in New Caledonian <i>Phyllanthus</i> (Euphorbiaceae). American Journal of Botany, 2004, 91, 410-415.	1.7	60
15	Phylogeny, historical biogeography, and character evolution in bumble bees (Bombus: Apidae) based on simultaneous analysis of three nuclear gene sequences. Molecular Phylogenetics and Evolution, 2004, 31, 799-804.	2.7	57
16	Allopatric distribution and diversification without niche shift in a bryophyte-feeding basal moth lineage (Lepidoptera: Micropterigidae). Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3026-3033.	2.6	54
17	Increased gene sampling strengthens support for higher-level groups within leaf-mining moths and relatives (Lepidoptera: Gracillariidae). BMC Evolutionary Biology, 2011, 11, 182.	3. 2	52
18	Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae). Apidologie, 2008, 39, 163-175.	2.0	51

#	Article	IF	CITATIONS
19	Obligate pollination mutualism in <i>Breynia</i> (Phyllanthaceae): further documentation of pollination mutualism involving <i>Epicephala</i> moths (Gracillariidae). American Journal of Botany, 2004, 91, 1319-1325.	1.7	49
20	Cryptic genetic divergence and associated morphological differentiation in the arboreal land snail Satsuma (Luchuhadra) largillierti (Camaenidae) endemic to the Ryukyu Archipelago, Japan. Molecular Phylogenetics and Evolution, 2007, 45, 519-533.	2.7	49
21	Non-congruent colonizations and diversification in a coevolving pollination mutualism on oceanic islands. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130361.	2.6	49
22	Plant–pollinator interactions in tropical monsoon forests in Southeast Asia. American Journal of Botany, 2008, 95, 1375-1394.	1.7	47
23	Reproductive Character Displacement in Genital Morphology in <i>Satsuma</i> Land Snails. American Naturalist, 2009, 173, 689-697.	2.1	45
24	Mutualism favours higher host specificity than does antagonism in plant–herbivore interaction. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2765-2774.	2.6	44
25	Floral biology and unique pollination system of root holoparasites, <i>Balanophora kuroiwai</i> and <i>B. tobiracola</i> (Balanophoraceae). American Journal of Botany, 2002, 89, 1164-1170.	1.7	41
26	Host Range and Selectivity of the Hemiparasitic Plant Thesium chinense (Santalaceae). Annals of Botany, 2008, 102, 49-55.	2.9	39
27	Variation in the strength of association among pollination systems and floral traits: Evolutionary changes in the floral traits of Bornean gingers (Zingiberaceae). American Journal of Botany, 2013, 100, 546-555.	1.7	35
28	Active pollination favours sexual dimorphism in floral scent. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132280.	2.6	33
29	Floral adaptations to nocturnal moth pollination in <i>Diplomorpha</i> (Thymelaeaceae). Plant Species Biology, 2008, 23, 192-201.	1.0	28
30	Reversal of mutualism in a leafflower-leafflower moth association: the possible driving role of a third-party partner. Biological Journal of the Linnean Society, 2015, 116, 507-518.	1.6	26
31	Pollination by fungus gnats and associated floral characteristics in five families of the Japanese flora. Annals of Botany, 2018, 121, 651-663.	2.9	26
32	Phylogenetic test of speciation by host shift in leaf cone moths (Caloptilia) feeding on maples (Acer) Tj ETQqC	0 0 0 rgBT /	Overlock 10 1
33	Pollination system and the effect of inflorescence size on fruit set in the deceptive orchid Cephalanthera falcata. Journal of Plant Research, 2015, 128, 585-594.	2.4	24
34	Active pollination drives selection for reduced pollenâ€ovule ratios. American Journal of Botany, 2020, 107, 164-170.	1.7	22
35	Revision of the Japanese species of Epicephala Meyrick with descriptions of seven new species (Lepidoptera, Gracillariidae). ZooKeys, 2016, 568, 87-118.	1.1	20
36	Fern–sporeâ€feeder interaction in temperate forests in Japan: Sporing phenology and sporeâ€feeding insect community. American Journal of Botany, 2009, 96, 594-604.	1.7	17

#	Article	IF	CITATIONS
37	Pollinator and Stem- and Corm-Boring Insects Associated with Mycoheterotrophic Orchid <i>Gastrodia elata </i> . Annals of the Entomological Society of America, 2006, 99, 851-858.	2.5	15
38	Leaf shape deters plant processing by an herbivorous weevil. Nature Plants, 2019, 5, 959-964.	9.3	15
39	Leafflower–leafflower moth mutualism in the Neotropics: Successful transoceanic dispersal from the Old World to the New World by actively-pollinating leafflower moths. PLoS ONE, 2019, 14, e0210727.	2.5	11
40	Phylogeny of gracillariid leafâ€mining moths: evolution of larval behaviour inferred from phylogenomic and Sanger data. Cladistics, 2022, 38, 277-300.	3.3	11
41	Redundant species, cryptic host-associated divergence, and secondary shift in Sennertia mites (Acari:) Tj ETQq1 1 Japanese island arc. Molecular Phylogenetics and Evolution, 2008, 49, 503-513.	0.784314 2.7	rgBT /Over 10
42	Colonization to Aquifers and Adaptations to Subterranean Interstitial Life by a Water Beetle Clade (Noteridae) with Description of a NewPhreatodytesSpecies. Zoological Science, 2010, 27, 717-722.	0.7	9
43	Evidence for specificity to <i>Glomus</i> group Ab in two Asian mycoheterotrophic <i>Burmannia</i> species. Plant Species Biology, 2014, 29, 57-64.	1.0	9
44	Patterns of temporal and enemy niche use by a community of leaf cone moths (<i>Caloptilia</i>) coexisting on maples (<i>Acer</i>) as revealed by metabarcoding. Molecular Ecology, 2017, 26, 3309-3319.	3.9	9
45	Pollinia transfer on moth legs in <i>Hoya carnosa</i> (Apocynaceae). American Journal of Botany, 2017, 104, 953-960.	1.7	8
46	Phylogenetic Position of the Endemic Large Carpenter Bee of the Ogasawara Islands, Xylocopa ogasawarensis (Matsumura, 1912) (Hymenoptera: Apidae), Inferred from Four Genes. Zoological Science, 2008, 25, 838-842.	0.7	7
47	Limiting the cost of mutualism: the defensive role of elongated gynophore in the leafflower–moth mutualism. Oecologia, 2017, 184, 835-846.	2.0	7
48	An alien <i>Sennertia</i> mite (Acari: Chaetodactylidae) associated with an introduced Oriental bambooâ€nesting large carpenter bee (Hymenoptera: Apidae: <i>Xylocopa</i>) invading the central Honshu Island, Japan. Entomological Science, 2010, 13, 303-310.	0.6	5
49	Presence of weed fungus in a nonâ€social beetle–fungus cultivation mutualism. Ecological Entomology, 2016, 41, 253-262.	2.2	5
50	Nocturnal emission and postâ€pollination change of floral scent in the leafflower tree, <i>Glochidion rubrum</i> , exclusively pollinated by seedâ€parasitic leafflower moths. Plant Species Biology, 2022, 37, 197-208.	1.0	5
51	Hawaiian Philodoria (Lepidoptera, Gracillariidae, Ornixolinae) leaf mining moths on Myrsine (Primulaceae): two new species and biological data. ZooKeys, 2018, 773, 109-141.	1.1	4
52	Modified leaves with diskâ€shaped nectaries of <i>Macaranga sinensis</i> (Euphorbiaceae) provide reward for pollinators. American Journal of Botany, 2013, 100, 628-632.	1.7	3
53	Diversity and evolution of pollinator rewards and protection by Macaranga (Euphorbiaceae) bracteoles. Evolutionary Ecology, 2015, 29, 379-390.	1.2	2
54	Slippery flowers as a mechanism of defence against nectar-thieving ants. Annals of Botany, 2021, 127, 231-239.	2.9	2

#	Article	IF	CITATIONS
55	Pollination of Phyllanthus (Phyllanthaceae) by gall midges that use male flower buds as larval brood sites. Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 293, 152115.	1.2	2
56	Development of Nine Markers and Characterization of the Microsatellite Loci in the Endangered Gymnogobius isaza (Gobiidae). International Journal of Molecular Sciences, 2012, 13, 5700-5705.	4.1	1
57	Isolation and Characterization of 11 Microsatellite Markers for Glochidion acuminatum (Phyllanthaceae). Applications in Plant Sciences, 2014, 2, 1400045.	2.1	1
58	High degree of polyphagy in a seed-eating bark beetle, <i>Coccotrypes gedeanus</i> (Coleoptera:) Tj ETQq0 0 0 Tropics, 2018, 27, 59-66.	rgBT /Ove 0.8	erlock 10 Tf 5
59	Community-level plant–pollinator interactions in a Palaeotropical montane evergreen oak forest ecosystem. Journal of Natural History, 2020, 54, 2125-2176.	0.5	0
60	Shape-dependent leaf manipulation in the leaf rolling weevil <i>Phymatapoderus pavens</i> (Coleoptera: Attelabidae). Biological Journal of the Linnean Society, 0, , .	1.6	0