Xiumei Mo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4724479/publications.pdf

Version: 2024-02-01

		136950	175258
56	2,880	32	52
papers	citations	h-index	g-index
56	56	56	3821
30	30	30	3021
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advances in electrospun scaffolds for meniscus tissue engineering and regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 923-949.	3.4	10
2	Vascular Endothelial Growth Factor-Capturing Aligned Electrospun Polycaprolactone/Gelatin Nanofibers Promote Patellar Ligament Regeneration. Acta Biomaterialia, 2022, 140, 233-246.	8.3	41
3	Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing. Materials Science and Engineering C, 2022, 133, 112609.	7. 3	25
4	Electrospun biodegradable nanofibers loaded with epigallocatechin gallate for guided bone regeneration. Composites Part B: Engineering, 2022, 238, 109920.	12.0	17
5	Synergistic effect of glucagon-like peptide-1 analogue liraglutide and ZnO on the antibacterial, hemostatic, and wound healing properties of nanofibrous dressings. Journal of Bioscience and Bioengineering, 2022, 134, 248-258.	2.2	10
6	Harnessing electrospun nanofibers to recapitulate hierarchical fibrous structures of meniscus. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 201-213.	3.4	23
7	Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration. Materials Science and Engineering C, 2021, 118, 111312.	7.3	40
8	Electrospinning for healthcare: recent advancements. Journal of Materials Chemistry B, 2021, 9, 939-951.	5.8	81
9	Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. Journal of Materials Chemistry B, 2021, 9, 1452-1465.	5.8	78
10	Nanofiber Configuration of Electrospun Scaffolds Dictating Cell Behaviors and Cell-scaffold Interactions. Chemical Research in Chinese Universities, 2021, 37, 456-463.	2.6	4
11	Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111637.	5.0	41
12	A woven scaffold with continuous mineral gradients for tendon-to-bone tissue engineering. Composites Part B: Engineering, 2021, 212, 108679.	12.0	31
13	Nanofiber configuration affects biological performance of decellularized meniscus extracellular matrix incorporated electrospun scaffolds. Biomedical Materials (Bristol), 2021, 16, 065013.	3.3	11
14	A multifunctional green antibacterial rapid hemostasis composite wound dressing for wound healing. Biomaterials Science, 2021, 9, 7124-7133.	5.4	24
15	Magnesium oxide-incorporated electrospun membranes inhibit bacterial infections and promote the healing process of infected wounds. Journal of Materials Chemistry B, 2021, 9, 3727-3744.	5.8	39
16	PLCL/Silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: Fabrication, characterization and biological evaluation. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111352.	5.0	40
17	Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioactive Materials, 2020, 5, 963-979.	15.6	121
18	A novel knitted scaffold made of microfiber/nanofiber core–sheath yarns for tendon tissue engineering. Biomaterials Science, 2020, 8, 4413-4425.	5.4	43

#	Article	IF	CITATIONS
19	Mechanical matching nanofibrous vascular scaffold with effective anticoagulation for vascular tissue engineering. Composites Part B: Engineering, 2020, 186, 107788.	12.0	43
20	A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomaterialia, 2020, 108, 207-222.	8.3	96
21	Physico-Chemical and Biological Evaluation of PLCL/SF Nanofibers Loaded with Oregano Essential Oil. Pharmaceutics, 2019, 11, 386.	4.5	35
22	Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics, 2019, 11, 182.	4.5	151
23	3D printing of biomimetic vasculature for tissue regeneration. Materials Horizons, 2019, 6, 1197-1206.	12.2	88
24	A general strategy of 3D printing thermosets for diverse applications. Materials Horizons, 2019, 6, 394-404.	12.2	89
25	In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 2019, 84, 98-113.	8.3	174
26	Synthesis of cellulose diacetate based copolymer electrospun nanofibers for tissues scaffold. Applied Surface Science, 2018, 443, 374-381.	6.1	26
27	Fabrication and characterization of TGF-β1-loaded electrospun poly (lactic-co-glycolic acid) core-sheath sutures. Colloids and Surfaces B: Biointerfaces, 2018, 161, 331-338.	5.0	28
28	Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Materials Science and Engineering C, 2018, 82, 121-129.	7.3	87
29	Preparation and evaluation of poly(ester-urethane) urea/gelatin nanofibers based on different crosslinking strategies for potential applications in vascular tissue engineering. RSC Advances, 2018, 8, 35917-35927.	3.6	7
30	Rosuvastatin- and Heparin-Loaded Poly(<scp>l</scp> -lactide- <i>co</i> -caprolactone) Nanofiber Aneurysm Stent Promotes Endothelialization via Vascular Endothelial Growth Factor Type A Modulation. ACS Applied Materials & Diterfaces, 2018, 10, 41012-41018.	8.0	23
31	A Single Integrated 3Dâ€Printing Process Customizes Elastic and Sustainable Triboelectric Nanogenerators for Wearable Electronics. Advanced Functional Materials, 2018, 28, 1805108.	14.9	126
32	Dual-layer aligned-random nanofibrous scaffolds for improving gradient microstructure of tendon-to-bone healing in a rabbit extra-articular model. International Journal of Nanomedicine, 2018, Volume 13, 3481-3492.	6.7	57
33	Synthesis of RGD-peptide modified poly(ester-urethane) urea electrospun nanofibers as a potential application for vascular tissue engineering. Chemical Engineering Journal, 2017, 315, 177-190.	12.7	77
34	Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Colloids and Surfaces B: Biointerfaces, 2017, 151, 314-323.	5.0	35
35	Heparin and rosuvastatin calcium-loaded poly(<scp>l</scp> -lactide-co-caprolactone) nanofiber-covered stent-grafts for aneurysm treatment. New Journal of Chemistry, 2017, 41, 9014-9023.	2.8	15
36	A facile approach for the fabrication of nano-attapulgite/poly(vinyl pyrrolidone)/biopolymers core–sheath ultrafine fibrous mats for drug controlled release. RSC Advances, 2016, 6, 49817-49823.	3.6	12

#	Article	IF	CITATIONS
37	Fabrication and characterization of metal stent coating with drug-loaded nanofiber film for gallstone dissolution. Journal of Biomaterials Applications, 2016, 31, 784-796.	2.4	14
38	Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24415-24425.	8.0	246
39	Fabrication of poly(ester-urethane)urea elastomer/gelatin electrospun nanofibrous membranes for potential applications in skin tissue engineering. RSC Advances, 2016, 6, 73636-73644.	3.6	23
40	Hyaluronic acid/EDC/NHS-crosslinked green electrospun silk fibroin nanofibrous scaffolds forÂtissue engineering. RSC Advances, 2016, 6, 99720-99728.	3.6	34
41	Orthogonally Functionalizable Polyurethane with Subsequent Modification with Heparin and Endothelium-Inducing Peptide Aiming for Vascular Reconstruction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14442-14452.	8.0	39
42	Electrospun silk fibroin–poly (lactic-co-glycolic acid) membrane for nerve tissue engineering. Journal of Bioactive and Compatible Polymers, 2016, 31, 208-224.	2.1	10
43	Heparin and Vascular Endothelial Growth Factor Loaded Poly(L-lactide-co-caprolactone) Nanofiber Covered Stent-Graft for Aneurysm Treatment. Journal of Biomedical Nanotechnology, 2015, 11, 1947-1960.	1.1	46
44	A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids and Surfaces B: Biointerfaces, 2015, 133, 179-188.	5.0	52
45	Thiol Click Modification of Cyclic Disulfide Containing Biodegradable Polyurethane Urea Elastomers. Biomacromolecules, 2015, 16, 1622-1633.	5.4	32
46	The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering. Biomaterials, 2014, 35, 2760-2772.	11.4	97
47	A novel heparin loaded poly(l-lactide-co-caprolactone) covered stent for aneurysm therapy. Materials Letters, 2014, 116, 39-42.	2.6	16
48	Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine. Acta Biomaterialia, 2014, 10, 4639-4649.	8.3	66
49	A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering. Colloids and Surfaces B: Biointerfaces, 2014, 122, 270-276.	5.0	92
50	Cell Infiltration and Vascularization in Porous Nanoyarn Scaffolds Prepared by Dynamic Liquid Electrospinning. Journal of Biomedical Nanotechnology, 2014, 10, 603-614.	1.1	66
51	Fabrication of Silk Fibroin/P(LLA L) Aligned Nanofibrous Scaffolds for Nerve Tissue Engineering. Macromolecular Materials and Engineering, 2013, 298, 565-574.	3.6	29
52	Dual-Drug Encapsulation and Release from Core–Shell Nanofibers. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 861-871.	3.5	46
53	Encapsulation and Controlled Release of Heparin from Electrospun Poly(L-Lactide-co-ε-Caprolactone) Nanofibers. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 165-177.	3.5	36
54	Degradation of electrospun SF/P(LLA-CL) blended nanofibrous scaffolds inÂvitro. Polymer Degradation and Stability, 2011, 96, 2266-2275.	5.8	40

Хіимеі Мо

#	ARTICLE	IF	CITATIONS
55	Electrospinning of Heparin Encapsulated P(LLA-CL) Core/Shell Nanofibers. Nano Biomedicine and Engineering, 2010, 2, .	0.9	28
56	Sorbitan monooleate and poly(<scp>L</scp> â€lactideâ€ <i>co</i> âflµâ€caprolactone) electrospun nanofibers for endothelial cell interactions. Journal of Biomedical Materials Research - Part A, 2009, 91A, 878-885.	4.0	20