
Xiumei Mo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4724479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 24415-24425.	8.0	246
2	In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 2019, 84, 98-113.	8.3	174
3	Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics, 2019, 11, 182.	4.5	151
4	A Single Integrated 3Dâ€Printing Process Customizes Elastic and Sustainable Triboelectric Nanogenerators for Wearable Electronics. Advanced Functional Materials, 2018, 28, 1805108.	14.9	126
5	Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioactive Materials, 2020, 5, 963-979.	15.6	121
6	The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering. Biomaterials, 2014, 35, 2760-2772.	11.4	97
7	A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomaterialia, 2020, 108, 207-222.	8.3	96
8	A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering. Colloids and Surfaces B: Biointerfaces, 2014, 122, 270-276.	5.0	92
9	A general strategy of 3D printing thermosets for diverse applications. Materials Horizons, 2019, 6, 394-404.	12.2	89
10	3D printing of biomimetic vasculature for tissue regeneration. Materials Horizons, 2019, 6, 1197-1206.	12.2	88
11	Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Materials Science and Engineering C, 2018, 82, 121-129.	7.3	87
12	Electrospinning for healthcare: recent advancements. Journal of Materials Chemistry B, 2021, 9, 939-951.	5.8	81
13	Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. Journal of Materials Chemistry B, 2021, 9, 1452-1465.	5.8	78
14	Synthesis of RGD-peptide modified poly(ester-urethane) urea electrospun nanofibers as a potential application for vascular tissue engineering. Chemical Engineering Journal, 2017, 315, 177-190.	12.7	77
15	Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine. Acta Biomaterialia, 2014, 10, 4639-4649.	8.3	66
16	Cell Infiltration and Vascularization in Porous Nanoyarn Scaffolds Prepared by Dynamic Liquid Electrospinning. Journal of Biomedical Nanotechnology, 2014, 10, 603-614.	1.1	66
17	Dual-layer aligned-random nanofibrous scaffolds for improving gradient microstructure of tendon-to-bone healing in a rabbit extra-articular model. International Journal of Nanomedicine, 2018, Volume 13, 3481-3492.	6.7	57
18	A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids and Surfaces B: Biointerfaces, 2015, 133, 179-188.	5.0	52

Хіимеі Мо

#	Article	IF	CITATIONS
19	Dual-Drug Encapsulation and Release from Core–Shell Nanofibers. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 861-871.	3.5	46
20	Heparin and Vascular Endothelial Growth Factor Loaded Poly(L-lactide-co-caprolactone) Nanofiber Covered Stent-Graft for Aneurysm Treatment. Journal of Biomedical Nanotechnology, 2015, 11, 1947-1960.	1.1	46
21	A novel knitted scaffold made of microfiber/nanofiber core–sheath yarns for tendon tissue engineering. Biomaterials Science, 2020, 8, 4413-4425.	5.4	43
22	Mechanical matching nanofibrous vascular scaffold with effective anticoagulation for vascular tissue engineering. Composites Part B: Engineering, 2020, 186, 107788.	12.0	43
23	Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111637.	5.0	41
24	Vascular Endothelial Growth Factor-Capturing Aligned Electrospun Polycaprolactone/Gelatin Nanofibers Promote Patellar Ligament Regeneration. Acta Biomaterialia, 2022, 140, 233-246.	8.3	41
25	Degradation of electrospun SF/P(LLA-CL) blended nanofibrous scaffolds inÂvitro. Polymer Degradation and Stability, 2011, 96, 2266-2275.	5.8	40
26	PLCL/Silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: Fabrication, characterization and biological evaluation. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111352.	5.0	40
27	Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration. Materials Science and Engineering C, 2021, 118, 111312.	7.3	40
28	Orthogonally Functionalizable Polyurethane with Subsequent Modification with Heparin and Endothelium-Inducing Peptide Aiming for Vascular Reconstruction. ACS Applied Materials & Interfaces, 2016, 8, 14442-14452.	8.0	39
29	Magnesium oxide-incorporated electrospun membranes inhibit bacterial infections and promote the healing process of infected wounds. Journal of Materials Chemistry B, 2021, 9, 3727-3744.	5.8	39
30	Encapsulation and Controlled Release of Heparin from Electrospun Poly(L-Lactide-co-ε-Caprolactone) Nanofibers. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 165-177.	3.5	36
31	Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Colloids and Surfaces B: Biointerfaces, 2017, 151, 314-323.	5.0	35
32	Physico-Chemical and Biological Evaluation of PLCL/SF Nanofibers Loaded with Oregano Essential Oil. Pharmaceutics, 2019, 11, 386.	4.5	35
33	Hyaluronic acid/EDC/NHS-crosslinked green electrospun silk fibroin nanofibrous scaffolds forÂtissue engineering. RSC Advances, 2016, 6, 99720-99728.	3.6	34
34	Thiol Click Modification of Cyclic Disulfide Containing Biodegradable Polyurethane Urea Elastomers. Biomacromolecules, 2015, 16, 1622-1633.	5.4	32
35	A woven scaffold with continuous mineral gradients for tendon-to-bone tissue engineering. Composites Part B: Engineering, 2021, 212, 108679.	12.0	31
36	Fabrication of Silk Fibroin/P(LLA L) Aligned Nanofibrous Scaffolds for Nerve Tissue Engineering. Macromolecular Materials and Engineering, 2013, 298, 565-574.	3.6	29

Хіимеі Мо

#	Article	IF	CITATIONS
37	Fabrication and characterization of TGF-β1-loaded electrospun poly (lactic-co-glycolic acid) core-sheath sutures. Colloids and Surfaces B: Biointerfaces, 2018, 161, 331-338.	5.0	28
38	Electrospinning of Heparin Encapsulated P(LLA-CL) Core/Shell Nanofibers. Nano Biomedicine and Engineering, 2010, 2, .	0.9	28
39	Synthesis of cellulose diacetate based copolymer electrospun nanofibers for tissues scaffold. Applied Surface Science, 2018, 443, 374-381.	6.1	26
40	Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing. Materials Science and Engineering C, 2022, 133, 112609.	7.3	25
41	A multifunctional green antibacterial rapid hemostasis composite wound dressing for wound healing. Biomaterials Science, 2021, 9, 7124-7133.	5.4	24
42	Fabrication of poly(ester-urethane)urea elastomer/gelatin electrospun nanofibrous membranes for potential applications in skin tissue engineering. RSC Advances, 2016, 6, 73636-73644.	3.6	23
43	Rosuvastatin- and Heparin-Loaded Poly(<scp>l</scp> -lactide- <i>co</i> -caprolactone) Nanofiber Aneurysm Stent Promotes Endothelialization via Vascular Endothelial Growth Factor Type A Modulation. ACS Applied Materials & Interfaces, 2018, 10, 41012-41018.	8.0	23
44	Harnessing electrospun nanofibers to recapitulate hierarchical fibrous structures of meniscus. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 201-213.	3.4	23
45	Sorbitan monooleate and poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€lµâ€caprolactone) electrospun nanofibers for endothelial cell interactions. Journal of Biomedical Materials Research - Part A, 2009, 91A, 878-885.	4.0	20
46	Electrospun biodegradable nanofibers loaded with epigallocatechin gallate for guided bone regeneration. Composites Part B: Engineering, 2022, 238, 109920.	12.0	17
47	A novel heparin loaded poly(l-lactide-co-caprolactone) covered stent for aneurysm therapy. Materials Letters, 2014, 116, 39-42.	2.6	16
48	Heparin and rosuvastatin calcium-loaded poly(<scp>l</scp> -lactide-co-caprolactone) nanofiber-covered stent-grafts for aneurysm treatment. New Journal of Chemistry, 2017, 41, 9014-9023.	2.8	15
49	Fabrication and characterization of metal stent coating with drug-loaded nanofiber film for gallstone dissolution. Journal of Biomaterials Applications, 2016, 31, 784-796.	2.4	14
50	A facile approach for the fabrication of nano-attapulgite/poly(vinyl pyrrolidone)/biopolymers core–sheath ultrafine fibrous mats for drug controlled release. RSC Advances, 2016, 6, 49817-49823.	3.6	12
51	Nanofiber configuration affects biological performance of decellularized meniscus extracellular matrix incorporated electrospun scaffolds. Biomedical Materials (Bristol), 2021, 16, 065013.	3.3	11
52	Electrospun silk fibroin–poly (lactic-co-glycolic acid) membrane for nerve tissue engineering. Journal of Bioactive and Compatible Polymers, 2016, 31, 208-224.	2.1	10
53	Advances in electrospun scaffolds for meniscus tissue engineering and regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 923-949.	3.4	10
54	Synergistic effect of glucagon-like peptide-1 analogue liraglutide and ZnO on the antibacterial, hemostatic, and wound healing properties of nanofibrous dressings. Journal of Bioscience and Bioengineering, 2022, 134, 248-258.	2.2	10

#	Article	IF	CITATIONS
55	Preparation and evaluation of poly(ester-urethane) urea/gelatin nanofibers based on different crosslinking strategies for potential applications in vascular tissue engineering. RSC Advances, 2018, 8, 35917-35927.	3.6	7
56	Nanofiber Configuration of Electrospun Scaffolds Dictating Cell Behaviors and Cell-scaffold Interactions. Chemical Research in Chinese Universities, 2021, 37, 456-463.	2.6	4