Hakan Kockar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4723326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth of Iron Oxide Nanoparticles by Hydrothermal Process: Effect of Reaction Parameters on the Nanoparticle Size. Journal of Superconductivity and Novel Magnetism, 2015, 28, 823-829.	1.8	84
2	Comparison of Ni–Cu alloy films electrodeposited at low and high pH levels. Journal of Alloys and Compounds, 2008, 453, 15-19.	5.5	78
3	A Simple Way to Synthesize Superparamagnetic Iron Oxide Nanoparticles in Air Atmosphere: Iron Ion Concentration Effect. IEEE Transactions on Magnetics, 2010, 46, 3978-3983.	2.1	72
4	The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization. Journal of Magnetism and Magnetic Materials, 2019, 473, 262-267.	2.3	69
5	Electrodeposited Ni–Co films from electrolytes with different Co contents. Applied Surface Science, 2012, 258, 4005-4010.	6.1	62
6	Growth and characterizations of magnetic nanoparticles under hydrothermal conditions: Reaction time and temperature. Journal of Magnetism and Magnetic Materials, 2015, 373, 213-216.	2.3	52
7	A simple way to obtain high saturation magnetization for superparamagnetic iron oxide nanoparticles synthesized in air atmosphere: Optimization by experimental design. Journal of Magnetism and Magnetic Materials, 2016, 409, 116-123.	2.3	40
8	Superparamagnetic zinc ferrite: A correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process. Journal of Magnetism and Magnetic Materials, 2019, 474, 282-286.	2.3	40
9	Role of electrolyte pH on structural and magnetic properties of Co–Fe films. Journal of Magnetism and Magnetic Materials, 2010, 322, 1095-1097.	2.3	33
10	Superparamagnetic Cobalt Ferrite Nanoparticles: Effect of Temperature and Base Concentration. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1021-1027.	1.8	33
11	Development of electrodeposited multilayer coatings: A review of fabrication, microstructure, properties and applications. Applied Surface Science Advances, 2021, 6, 100141.	6.8	33
12	Effect of Synthesis Parameters on the Properties of Superparamagnetic Iron Oxide Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2777-2781.	1.8	31
13	Magnetic Characterizations of Cobalt Oxide Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2783-2787.	1.8	31
14	Effect of film thickness on properties of electrodeposited Ni–Co films. Applied Surface Science, 2012, 258, 5046-5051.	6.1	30
15	Iron Oxide Nanoparticles Co-Precipitated in Air Environment: Effect of [Fe\$^{+2}\$]/[Fe\$^{+3}\$] Ratio. IEEE Transactions on Magnetics, 2012, 48, 1532-1536.	2.1	29
16	A new example of the diffusion-limited aggregation: Ni–Cu film patterns. Applied Surface Science, 2010, 256, 2995-2999.	6.1	28
17	The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni–Co films. Applied Surface Science, 2011, 257, 3632-3635.	6.1	28
18	Characterisations of CoCu films electrodeposited at different cathode potentials. Journal of Magnetism and Magnetic Materials, 2010, 322, 1098-1101.	2.3	27

#	Article	IF	CITATIONS
19	Superparamagnetic iron oxide nanoparticles: effect of iron oleate precursors obtained with a simple way. Journal of Materials Science: Materials in Electronics, 2013, 24, 3073-3080.	2.2	27
20	Magnetic anisotropy and its thickness dependence for NiFe alloy films electrodeposited on polycrystalline Cu substrates. Journal of Magnetism and Magnetic Materials, 2006, 304, e736-e738.	2.3	26
21	The rotation and clamping effect on the magnetic properties of iron films deposited onto a rotating substrate. Physica B: Condensed Matter, 2002, 321, 124-128.	2.7	25
22	Growth of binary Ni–Fe films: Characterisations at low and high potential levels. Journal of Magnetism and Magnetic Materials, 2015, 377, 59-64.	2.3	25
23	Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses. Journal of Magnetism and Magnetic Materials, 2017, 421, 472-476.	2.3	25
24	Properties of electrodeposited CoFe/Cu multilayers: The effect of Cu layer thickness. Journal of Magnetism and Magnetic Materials, 2015, 373, 128-131.	2.3	24
25	Parameters affecting microstructure and magnetoresistance of electrodeposited Co–Cu alloy films. Journal of Magnetism and Magnetic Materials, 2006, 304, e784-e786.	2.3	23
26	The Effect of Fe Content in Electrodeposited CoFe/Cu Multilayers on Structural, Magnetic and Magnetoresistance Characterizations. Journal of Nanoscience and Nanotechnology, 2010, 10, 7783-7786.	0.9	23
27	Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2022, 551, 169140.	2.3	23
28	Effect of potantiostatic waveforms on properties of electrodeposited NiFe alloy films. European Physical Journal B, 2004, 42, 497-501.	1.5	21
29	Rotation Speed-Induced Uniaxial In-Plane Anisotropy in Thin Films Deposited Onto a Rotating Substrate. Journal of Superconductivity and Novel Magnetism, 2004, 17, 531-536.	0.5	21
30	Properties of Co–Fe Films: Dependence of Cathode Potentials. IEEE Transactions on Magnetics, 2010, 46, 390-392.	2.1	21
31	Characterisations of CoFeCu films: Influence of Fe concentration. Journal of Alloys and Compounds, 2014, 586, S326-S330.	5.5	21
32	Giant magnetoresistance (GMR) behavior of electrodeposited NiFe/Cu multilayers: Dependence of non-magnetic and magnetic layer thicknesses. Journal of Magnetism and Magnetic Materials, 2017, 444, 132-139.	2.3	21
33	The effect of ferromagnetic and non-ferromagnetic layer thicknesses on the electrodeposited CoFe/Cu multilayers. Journal of Materials Science: Materials in Electronics, 2015, 26, 2411-2417.	2.2	19
34	Effects of biocompatible surfactants on structural and corresponding magnetic properties of iron oxide nanoparticles coated by hydrothermal process. Journal of Magnetism and Magnetic Materials, 2019, 474, 332-336.	2.3	18
35	Giant Magnetoresistance and Magnetic Properties of CoFe/Cu Multilayer Films: Dependence of Electrolyte pH. Journal of Superconductivity and Novel Magnetism, 2013, 26, 825-829.	1.8	17
36	Growth and Characterisation of Electrodeposited Co/Cu Superlattices. Journal of Nanoscience and Nanotechnology, 2008, 8, 854-860.	0.9	16

#	Article	IF	CITATIONS
37	The effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2020, 31, 2567-2574.	2.2	16
38	Electrodeposited NiCoFe films from electrolytes with different Fe ion concentrations. Journal of Magnetism and Magnetic Materials, 2014, 360, 148-151.	2.3	15
39	A simple way to synthesize tartaric acid, ascorbic acid and their mixture coated superparamagnetic iron oxide nanoparticles with high saturation magnetisation and high stability against oxidation: Characterizations and their biocompatibility studies. Journal of Magnetism and Magnetic Materials, 2019. 474. 654-660.	2.3	15
40	Magnetoresistance of CoNiCu/Cu Multilayers Electrodeposited from Electrolytes with Different Ni Ion Concentrations. Journal of the Electrochemical Society, 2010, 157, D538.	2.9	14
41	Electrodeposited NiFeCu/Cu multilayers: Effect of Fe ion concentration on properties. Journal of Magnetism and Magnetic Materials, 2015, 373, 135-139.	2.3	13
42	A Facile Method to Synthesize Nickel Ferrite Nanoparticles: Parameter Effect. Journal of Superconductivity and Novel Magnetism, 2017, 30, 2359-2369.	1.8	13
43	Characterisation of evaporated and laser-ablated 3% silicon–iron. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 187-190.	2.3	12
44	Influence of deposition potentials applied in continuous and pulse waveforms on magnetic properties of electrodeposited nickel–iron films. Sensors and Actuators A: Physical, 2006, 129, 184-187.	4.1	12
45	Emulsifier-free emulsion polymerization of methyl methacrylate containing hydrophilic magnetite nanoparticles. Macromolecular Research, 2010, 18, 1154-1159.	2.4	12
46	Electrodeposited Cobalt Films: Alteration Caused by the Electrolyte pH. Journal of Superconductivity and Novel Magnetism, 2011, 24, 801-804.	1.8	12
47	Influence of Co:Cu ratio on properties of Co–Cu films deposited at different conditions. Journal of Magnetism and Magnetic Materials, 2012, 324, 3834-3838.	2.3	12
48	Characterizations of NiCu/Cu Multilayers: Dependence of Nonmagnetic Layer Thickness. Journal of Superconductivity and Novel Magnetism, 2013, 26, 779-784.	1.8	12
49	Total film thickness controlled structural and related magnetic properties of sputtered Ni/Cu multilayer thin films. Journal of Magnetism and Magnetic Materials, 2019, 478, 48-54.	2.3	12
50	In-plane anisotropy and stress detection of films deposited by RC technique. European Physical Journal B, 2001, 24, 457-461.	1.5	11
51	Factors affecting magnetic properties of evaporated iron films. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 183-186.	2.3	11
52	A Simple Method of Synthesis and Characterizations of Oleate-Coated Iron Oxide Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2017, 30, 2023-2027.	1.8	11
53	Composition Dependence of Structural and Magnetic Properties of Electrodeposited Co-Cu Films. IEEE Transactions on Magnetics, 2010, 46, 3973-3977.	2.1	10
54	Co–Fe Films: Effect of Fe Content on Their Properties. Journal of Nanoscience and Nanotechnology, 2010, 10, 7639-7642.	0.9	10

#	Article	IF	CITATIONS
55	Properties of Iron Oxide Nanoparticles Synthesized atÂDifferentÂTemperatures. Journal of Superconductivity and Novel Magnetism, 2011, 24, 675-678.	1.8	10
56	Properties of electrodeposited Co–Mn films: Influence of deposition parameters. Applied Surface Science, 2015, 358, 605-611.	6.1	10
57	Characterizations of Binary FeCr (AISI 430) Thin Films Deposited from a Single Magnetron Sputtering Under Easy Controllable Deposition Parameters. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2457-2465.	1.8	10
58	Superparamagnetic latex synthesized by a new route of emulsifierâ€free emulsion polymerization. Journal of Applied Polymer Science, 2011, 121, 2264-2272.	2.6	9
59	Differences observed in properties of ternary NiCoFe films electrodeposited at low and high pH. Journal of Materials Science: Materials in Electronics, 2013, 24, 1961-1965.	2.2	9
60	Electrodeposited Co–Ni Films: Electrolyte pH—Property Relationships. Journal of Superconductivity and Novel Magnetism, 2013, 26, 651-655.	1.8	9
61	Magnetoresistance behaviour in CoFe/Cu multilayers: thin Cu layer effect. Journal of Materials Science: Materials in Electronics, 2016, 27, 10059-10064.	2.2	9
62	Impact of Deposition Rate on the Structural and Magnetic Properties of Sputtered Ni/Cu Multilayer Thin Films. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 73, 85-90.	1.5	9
63	Optimisation of saturation magnetisation of iron nanoparticles synthesized by hydrogen reduction: Taguchi technique, response surface method, and multiple linear and quadratic regression analyses. Journal of Magnetism and Magnetic Materials, 2019, 473, 190-197.	2.3	9
64	Study of Electrolyte pH in Production of Cu–Co–Ni Ternary Alloys and Its Effect on Microstructural and Magnetic Properties. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	8
65	Characterizations of Electrodeposited NiCoFe Ternary Alloys: Influence of deposition potential. Journal of Materials Science: Materials in Electronics, 2015, 26, 4046-4050.	2.2	8
66	Influence of Deposition Parameters of Novel Vacuum Coating Plant on Evaporated Ni ₆₀ Fe ₄₀ and Ni ₈₀ Fe ₂₀ Films. Sensor Letters, 2009, 7, 220-223.	0.4	8
67	Production and characterisations of thin films deposited by a novel vacuum coating plant (VCP). Sensors and Actuators A: Physical, 2006, 129, 188-191.	4.1	7
68	Electrochemical production of Fe-Cu films: determination of the deposition potentials and their effect on microstructural and magnetic properties. EPJ Applied Physics, 2009, 48, 30504.	0.7	7
69	Single crystal martensitic phase of structural properties-related magnetic behaviour of FeCrNi thin films: in-plane magnetic anisotropy under different substrate rotation speeds. Journal of Materials Science: Materials in Electronics, 2020, 31, 12823-12829.	2.2	7
70	Evaluation of properties of sputtered Ni/Cu films with different thicknesses of the Cu layer. Thin Solid Films, 2021, 727, 138661.	1.8	7
71	The Role of Cu Content on Properties of Electrodeposited Fe-Cu Films. Sensor Letters, 2009, 7, 255-258.	0.4	7
72	A Numeric Application Using Diffusion Limited Aggregation Model for the Manganese Dendrites. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 777-780.	1.5	6

#	Article	IF	CITATIONS
73	Properties of Electrodeposited CoFeNi/Cu Superlattices: The Effect of CoFeNi and Cu Layers Thicknesses. Journal of Superconductivity and Novel Magnetism, 2013, 26, 813-817.	1.8	6
74	Scanning of nickel sulfamate concentration in electrodeposition bath used for production of Ni–Co alloys. Journal of Materials Science: Materials in Electronics, 2013, 24, 3376-3381.	2.2	6
75	Facile electrodeposition CoCu/Cu multilayers: deposition potentials for magnetic layers. Journal of Materials Science, 2017, 52, 3368-3374.	3.7	6
76	The Role of Wheel Surface Quality on Structural and Hard Magnetic Properties of Nd–Fe–B Permanent Magnet Powders. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3025-3041.	1.8	6
77	Giant Magnetoresistance in Electrochemical Deposited CoFe/Cu Multilayers Depending on Fe Concentration. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2195-2200.	1.8	6
78	Easy Controlled Properties of Quaternary FeNiCrCd Thin Films Deposited from a Single dc Magnetron Sputtering Under the Influence of Deposition Rate. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3535-3540.	1.8	6
79	Effect of NiFe layer thickness on properties of NiFe/Cu superlattices electrodeposited on titanium substrate. Journal of Materials Science: Materials in Electronics, 2019, 30, 17879-17889.	2.2	6
80	Ternary FeCrNi martensitic thin films sputtered on a flexible substrate from a single AISI 304 austenitic stainless steel source: Effect of deposition rate on structural and magnetic properties. Journal of Magnetism and Magnetic Materials, 2019, 476, 597-603.	2.3	6
81	Parametric Characterizations of Sputtered Fe/Al Multilayer Thin Films. Journal of Superconductivity and Novel Magnetism, 2020, 33, 463-472.	1.8	6
82	Uniaxial in-plane magnetic anisotropy in silicon-iron films prepared using vacuum coating plant (VCP). EPJ Applied Physics, 2005, 30, 185-188.	0.7	6
83	Paraoxonase 1-Bound Magnetic Nanoparticles: Preparation and Characterizations. Journal of Nanoscience and Nanotechnology, 2010, 10, 7554-7559.	0.9	5
84	Electrical properties of Poly(ethylene glycol dimethacrylate-n-vinyl imidazole)/Single Walled Carbon Nanotubes/n-Si Schottky diodes formed by surface polymerization of Single Walled Carbon Nanotubes. Thin Solid Films, 2012, 520, 2106-2109.	1.8	5
85	Influence of deposition potential on the electrodeposited Ternary CoFeCu films. Journal of Materials Science: Materials in Electronics, 2013, 24, 2562-2567.	2.2	5
86	Relation between ferromagnetic layer thickness (NiCu) and properties of NiCu/Cu multilayers. Journal of Materials Science: Materials in Electronics, 2015, 26, 5014-5021.	2.2	5
87	Characterizations of FeCl/Cu superlattices sputtered at low and high deposition rates of ferromagnetic layer. Journal of Magnetism and Magnetic Materials, 2015, 373, 124-127.	2.3	5
88	Electrochemical, Structural and Magnetic Analysis of Electrodeposited CoCu/Cu Multilayers: Influence of Cu Layer Deposition Potential. Journal of Electronic Materials, 2018, 47, 1896-1903.	2.2	5
89	Investigation of deposition parameters and output functions, and production of low coercivity films. EPJ Applied Physics, 2002, 17, 209-214.	0.7	5
90	Magnetic characterization of silicon–iron magnetic material produced by a novel rotating cryostat. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 91-93.	2.3	4

#	Article	IF	CITATIONS
91	Use of triethylene glycol monobutyl ether in synthesis of iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2014, 361, 249-254.	2.3	4
92	A study on total thickness dependency: microstructural, magnetoresistance and magnetic properties of electrochemically deposited permalloy based multilayers. Journal of Materials Science: Materials in Electronics, 2015, 26, 5009-5013.	2.2	4
93	Electrochemical Deposition of CoCu/Cu Multilayers: Structural and Magnetic Properties as a Function of Non-magnetic Layer Thickness. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2018, 73, 127-133.	1.5	4
94	Novel debittering process of green table olives: application of <i>β</i> -glucosidase bound onto superparamagnetic nanoparticles. CYTA - Journal of Food, 2018, 16, 840-847.	1.9	4
95	Effect of Co and Cu Layer Thicknesses on Characterization of Electrodeposited Co/Cu Multilayers. Sensor Letters, 2013, 11, 106-109.	0.4	4
96	Determination of Texture Orientation Related Magnetic Properties of Nickel-Cobalt Films. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 342-346.	1.5	3
97	Contribution of electrolyte pH and deposition potentials to the magnetic anisotropy of electrodeposited nickel films. Journal of Magnetism and Magnetic Materials, 2010, 322, 1088-1091.	2.3	3
98	Microstructure dependence of magnetic properties on electrochemically produced ternary CuCoNi alloys. Journal of Materials Science: Materials in Electronics, 2014, 25, 4483-4488.	2.2	3
99	Electrodeposited CoFeCu films at high and low pH levels: structural and magnetic properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 2090-2094.	2.2	3
100	Investigation of soft magnetic properties of Ni/Cu multilayer films: Definitive screening design and response surface methodology. Journal of Materials Science: Materials in Electronics, 2021, 32, 20955-20964.	2.2	3
101	Electrodeposition and Characterization of Co/Cu Multilayers. Acta Physica Polonica A, 2016, 129, 773-775.	0.5	3
102	The influence of deposition parameters on production of soft Fe \$mathsf{_{81}}\$Co \$mathsf{_{13.5}}\$Si \$mathsf{_{3.5}}\$C\$mathsf{_{2}}\$ and Fe \$mathsf{_{67}}\$Co \$mathsf{_{18}}\$Si\$mathsf{_{1}}\$B \$mathsf{_{14}}\$ films. European Physical Journal B, 2004, 39, 453-457.	1.5	2
103	Dependence of Magnetoresistance in Electrodeposited CoNiCu/Cu Multilayers on Ni Composition. ECS Transactions, 2010, 25, 87-95.	0.5	2
104	Reduction and characterizations of iron particles: influence of reduction parameters. Journal of Materials Science: Materials in Electronics, 2013, 24, 2602-2609.	2.2	2
105	Change in planar hall effect ratio of Ni–Co films produced by electrodeposition. Journal of Magnetism and Magnetic Materials, 2015, 373, 115-119.	2.3	2
106	Optimization of Fe content in Electrodeposited FeCoCu/Cu magnetic multilayer. Thin Solid Films, 2019, 673, 7-13.	1.8	2
107	Effect of l-ascorbic acid on electrochemically deposited FeCoCu/Cu magnetic multilayer granular films: structural, magnetic and magnetoresistance properties. Thin Solid Films, 2020, 709, 138180.	1.8	2
108	2D Magnetic Texture Analysis of Co–Cu Films. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 449-455.	1.5	1

#	Article	IF	CITATIONS
109	Improvement of the saturation magnetisation using Plackett–Burman design and response surface methodology: superparamagnetic iron oxide nanoparticles synthesised by co-precipitation under nitrogen atmosphere. Journal of Materials Science: Materials in Electronics, 2021, 32, 13673-13684.	2.2	1
110	Magnetic properties affected by structural properties of sputtered Ni/Cu multilayer films with different thicknesses of Ni layers. Korean Journal of Chemical Engineering, 0, , 1.	2.7	1
111	Parametric characterizations in superparamagnetic latex. Bulletin of Materials Science, 2014, 37, 389-396.	1.7	0
112	Development and Characterization of Superparamagnetic Nanomaterial to Determine Its Potential Application in Removing the Bitterness of Table Olives. Sensors and Materials, 2020, 32, 799.	0.5	0