Reinhard Depping

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4722615/publications.pdf

Version: 2024-02-01

52 papers

1,712 citations

28 h-index 289244 40 g-index

53 all docs

53 docs citations

53 times ranked 3095 citing authors

#	Article	IF	CITATIONS
1	Selinexor decreases HIF- $1\hat{l}\pm$ via inhibition of CRM1 in human osteosarcoma and hepatoma cells associated with an increased radiosensitivity. Journal of Cancer Research and Clinical Oncology, 2021, 147, 2025-2033.	2.5	6
2	miR663 Prevents Epo Inhibition Caused by TNF-Alpha in Normoxia and Hypoxia. International Journal of Endocrinology, 2021, 2021, 1-10.	1.5	2
3	Septin 9 isoform 1 (SEPT9_i1) specifically interacts with importinâ€Î±7 to drive hypoxiaâ€inducible factor (HIF)â€Îα nuclear translocation. Cytoskeleton, 2019, 76, 123-130.	2.0	6
4	<p>The Nuclear Export Inhibitor Selinexor Inhibits Hypoxia Signaling Pathways And 3D Spheroid Growth Of Cancer Cells</p> . OncoTargets and Therapy, 2019, Volume 12, 8387-8399.	2.0	8
5	Cover Image, Volume 76, Issue 1. Cytoskeleton, 2019, 76, C1-C1.	2.0	O
6	1H-NMR spectroscopy shows cellular uptake of HEPES buffer by human cell lines—an effect to be considered in cell culture experiments. Analytical and Bioanalytical Chemistry, 2019, 411, 797-802.	3.7	6
7	Karyopherin $\hat{1}$ ±-3 is a key protein in the pathogenesis of spinocerebellar ataxia type 3 controlling the nuclear localization of ataxin-3. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2624-E2633.	7.1	38
8	Controlling the Gatekeeper: Therapeutic Targeting of Nuclear Transport. Cells, 2018, 7, 221.	4.1	55
9	Hey1- and p53-dependent TrkC proapoptotic activity controls neuroblastoma growth. PLoS Biology, 2018, 16, e2002912.	5.6	14
10	In-depth Characterization of the Homodimerization Domain of the Transcription Factor THAP1 and Dystonia-Causing Mutations Therein. Journal of Molecular Neuroscience, 2017, 62, 11-16.	2.3	14
11	Interplay between environmentally modulated feedback loops – hypoxia and circadian rhythms – two sides of the same coin?. FEBS Journal, 2017, 284, 3801-3803.	4.7	6
12	Impact of hypoxia inducible factors on estrogen receptor expression in breast cancer cells. Archives of Biochemistry and Biophysics, 2017, 613, 23-30.	3.0	28
13	Hypoxic Upregulation of ARNT (HIF- $1\hat{l}^2$): A Cell-Specific Attribute with Clinical Implications. , 2017, , .		O
14	ARNT is a potential direct HIF-1 target gene in human Hep3B hepatocellular carcinoma cells. Cancer Cell International, 2017, 17, 77.	4.1	17
15	Targeting hypoxia to overcome radiation resistance in head & amp; neck cancers: real challenge or clinical fairytale?. Expert Review of Anticancer Therapy, 2016, 16, 751-758.	2.4	36
16	Prolyl-4-Hydroxylase 2 Potentially Contributes to Hepatocellular Carcinoma-Associated Erythrocytosis by Maintaining Hepatocyte Nuclear Factor-4α Expression. Cellular Physiology and Biochemistry, 2015, 37, 2257-2264.	1.6	3
17	The expression level of the transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT) determines cellular survival after radiation treatment. Radiation Oncology, 2015, 10, 229.	2.7	15
18	Importin- \hat{l}^2 facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Research, 2015, 43, 7447-7461.	14.5	52

#	Article	IF	CITATIONS
19	Nuclear-cytoplasmatic shuttling of proteins in control of cellular oxygen sensing. Journal of Molecular Medicine, 2015, 93, 599-608.	3.9	34
20	The importin $\hat{l}\pm/\hat{l}^2$ -specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways. Biological Chemistry, 2015, 396, 1357-1367.	2.5	50
21	Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies. Oncotarget, 2015, 6, 16517-16526.	1.8	44
22	Hypoxia-Inducible Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) (HIF- $1\hat{i}^2$): Is It a Rare Exception?. Molecular Medicine, 2014, 20, 215-220.	4.4	69
23	Identification of Importin $\hat{l}\pm 7$ Specific Transport Cargoes Using a Proteomic Screening Approach. Molecular and Cellular Proteomics, 2014, 13, 1286-1298.	3.8	20
24	THAP1, the gene mutated in DYT6 dystonia, autoregulates its own expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1196-1204.	1.9	19
25	Peptide Inhibitor of NF-κB Translocation Ameliorates Experimental Atherosclerosis. American Journal of Pathology, 2013, 182, 1910-1921.	3.8	52
26	The Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT/HIF- $1\ddot{\imath}_{\xi}^{1/2}$) is Influenced by Hypoxia and Hypoxia-Mimetics. Cellular Physiology and Biochemistry, 2013, 32, 849-858.	1.6	30
27	Nuclear Transport of Wilms′ Tumour Protein Wt1 Involves Importins α and β. Cellular Physiology and Biochemistry, 2012, 29, 223-232.	1.6	11
28	Oxygen sensing by Prolyl-4-Hydroxylase PHD2 within the nuclear compartment and the influence of compartimentalisation on HIF-1 signalling. Journal of Cell Science, 2012, 125, 5168-76.	2.0	52
29	Exploring the link between MORF4L1 and risk of breast cancer. Breast Cancer Research, 2011, 13, R40.	5.0	23
30	Protein kinase C α regulates nuclear pri-microRNA 15a release as part of endothelin signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1793-1802.	4.1	20
31	Curcumin Decreases Survival of Hep3B Liver and MCF-7 Breast Cancer Cells. Strahlentherapie Und Onkologie, 2011, 187, 393-400.	2.0	62
32	Stabilisation and Knockdown of HIF - Two Distinct Ways Comparably Important in Radiotherapy. Cellular Physiology and Biochemistry, 2011, 28, 805-812.	1.6	17
33	Notch1 signaling is mediated by importins alpha 3, 4, and 7. Cellular and Molecular Life Sciences, 2010, $67,3187-3196$.	5.4	59
34	Importin $\hat{l}\pm3$ Interacts with HIV-1 Integrase and Contributes to HIV-1 Nuclear Import and Replication. Journal of Virology, 2010, 84, 8650-8663.	3.4	85
35	Cellular oxygen sensing: Importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2. Biochemical and Biophysical Research Communications, 2009, 387, 705-711.	2.1	38
36	Trps1, a regulator of chondrocyte proliferation and differentiation, interacts with the activator form of Gli3. Developmental Biology, 2009, 328, 40-53.	2.0	75

#	Article	IF	CITATIONS
37	09-P024 The transcription factor Trps1 interacts with the activator form of Gli3 to regulate chondrocyte proliferation and differentiation. Mechanisms of Development, 2009, 126, S157.	1.7	0
38	Nonhematopoietic effects of erythropoiesis-stimulating agents., 2009,, 299-317.		4
39	Lack of functional erythropoietin receptors of cancer cell lines. International Journal of Cancer, 2008, 122, 1005-1011.	5.1	67
40	Nuclear translocation of hypoxia-inducible factors (HIFs): Involvement of the classical importin $\hat{l}\pm\hat{l}^2$ pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 394-404.	4.1	107
41	A p38–p65 transcription complex induced by endothelin-1 mediates signal transduction in cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1613-1622.	4.1	37
42	An Alternative Splice Variant in Abcc6, the Gene Causing Dystrophic Calcification, Leads to Protein Deficiency in C3H/He Mice. Journal of Biological Chemistry, 2008, 283, 7608-7615.	3.4	54
43	Non-hypoxic induction of HIF-3α by 2-deoxy-d-glucose and insulin. Biochemical and Biophysical Research Communications, 2007, 352, 437-443.	2.1	38
44	Synergistic cooperation of Sall4 and Cyclin D1 in transcriptional repression. Biochemical and Biophysical Research Communications, 2007, 356, 773-779.	2.1	24
45	Expression of the erythropoietin receptor in human heart. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 877.e1-877.e4.	0.8	65
46	The mono-ADP-ribosyltransferases Alt and ModB of bacteriophage T4: Target proteins identified. Biochemical and Biophysical Research Communications, 2005, 335, 1217-1223.	2.1	41
47	Hypoxia-Induced Mitogenic Factor Has Antiapoptotic Action and Is Upregulated in the Developing Lung. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 276-282.	2.9	54
48	Altered Pulmonary Vascular Reactivity in Mice with Excessive Erythrocytosis. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 829-835.	5.6	35
49	ModA and ModB, Two ADP-Ribosyltransferases Encoded by Bacteriophage T4: Catalytic Properties and Mutation Analysis. Journal of Bacteriology, 2004, 186, 7262-7272.	2.2	44
50	A Dominant-Negative Isoform of Hypoxia-Inducible Factor-1α Specifically Expressed in Human Testis1. Biology of Reproduction, 2004, 71, 331-339.	2.7	32
51	Bacteriophage T4 α-glucosyltransferase: a novel interaction with gp45 and aspects of the catalytic mechanism. Biochemical and Biophysical Research Communications, 2004, 323, 809-815.	2.1	7
52	Targeted Disruption of the Mouse PAS Domain Serine/Threonine Kinase PASKIN. Molecular and Cellular Biology, 2003, 23, 6780-6789.	2.3	36