Mohammad-Ali Shahbazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4722469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosensors and Bioelectronics, 2017, 91, 606-615.	5.3	271
2	The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 2020, 49, 1253-1321.	18.7	261
3	Multifunctional Photoactive Hydrogels for Wound Healing Acceleration. ACS Nano, 2021, 15, 18895-18930.	7.3	261
4	Promoting Role of MXene Nanosheets in Biomedical Sciences: Therapeutic and Biosensing Innovations. Advanced Healthcare Materials, 2019, 8, e1801137.	3.9	248
5	Immune Cell Membrane oated Biomimetic Nanoparticles for Targeted Cancer Therapy. Small, 2021, 17, e2006484.	5.2	216
6	Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. Journal of Controlled Release, 2016, 232, 29-41.	4.8	168
7	The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials, 2013, 34, 7776-7789.	5.7	163
8	Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy. Advanced Materials, 2017, 29, 1603239.	11.1	144
9	A Hydrogenâ€Bonded Extracellular Matrixâ€Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pHâ€Responsive Wound Healing Acceleration. Advanced Healthcare Materials, 2021, 10, e2001122.	3.9	142
10	Fabrication of a Multifunctional Nanoâ€inâ€micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Advanced Materials, 2014, 26, 4497-4503.	11.1	138
11	Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnology Advances, 2018, 36, 1003-1024.	6.0	136
12	Microneedles for painless transdermal immunotherapeutic applications. Journal of Controlled Release, 2021, 330, 185-217.	4.8	131
13	The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials, 2014, 35, 9199-9207.	5.7	127
14	Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials, 2013, 34, 9210-9219.	5.7	116
15	Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 17256-17269.	4.0	115
16	Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter, 2012, 2, 296-312.	2.6	112
17	Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6, 10377-10387.	2.8	108
18	Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials, 2014, 35, 7172-7179.	5.7	105

#	Article	IF	CITATIONS
19	Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Advanced Healthcare Materials, 2021, 10, e2001571.	3.9	104
20	Rapid detection of Salmonella enterica in food samples by a novel approach with combination of sample concentration and direct PCR. Biosensors and Bioelectronics, 2019, 129, 224-230.	5.3	101
21	Directional Freezeâ€Casting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications. Advanced Engineering Materials, 2020, 22, 2000033.	1.6	100
22	The Progress and Prospect of Zeolitic Imidazolate Frameworks in Cancer Therapy, Antibacterial Activity, and Biomineralization. Advanced Healthcare Materials, 2020, 9, e2000248.	3.9	99
23	Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. ACS Nano, 2015, 9, 8291-8302.	7.3	96
24	Thiolation and Cellâ€Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin. Advanced Functional Materials, 2016, 26, 3405-3416.	7.8	94
25	The Manufacture of Unbreakable Bionics via Multifunctional and Selfâ€Healing Silk–Graphene Hydrogels. Advanced Materials, 2021, 33, e2100047.	11.1	87
26	Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. Nanoscale, 2015, 7, 20063-20074.	2.8	81
27	Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials, 2015, 68, 9-20.	5.7	77
28	Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials, 2014, 35, 9224-9235.	5.7	72
29	InÂvitro and inÂvivo assessment of heart-homing porous silicon nanoparticles. Biomaterials, 2016, 94, 93-104.	5.7	72
30	Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomaterialia, 2021, 133, 231-243.	4.1	72
31	Effects of Mild and Severe Drought Stress on Photosynthetic Efficiency in Tolerant and Susceptible Barley (<i>Hordeum vulgare</i> L.) Genotypes. Journal of Agronomy and Crop Science, 2014, 200, 403-415.	1.7	71
32	Improving Oral Absorption Via Drug-Loaded Nanocarriers: Absorption Mechanisms, Intestinal Models and Rational Fabrication. Current Drug Metabolism, 2013, 14, 28-56.	0.7	66
33	Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 14822-14832.	4.0	66
34	Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 2018, 536, 241-250.	2.6	65
35	Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials, 2014, 35, 7488-7500.	5.7	61
36	DNA Hydrogel Assemblies: Bridging Synthesis Principles to Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800042.	1.6	61

#	Article	IF	CITATIONS
37	Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. ACS Applied Materials & Interfaces, 2019, 11, 12283-12297.	4.0	61
38	Nutlinâ€3a and Cytokine Coâ€loaded Spermineâ€Modified Acetalated Dextran Nanoparticles for Cancer Chemoâ€lmmunotherapy. Advanced Functional Materials, 2017, 27, 1703303.	7.8	61
39	Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications. Advanced Functional Materials, 2015, 25, 1488-1497.	7.8	60
40	Copolymers: Efficient Carriers for Intelligent Nanoparticulate Drug Targeting and Gene Therapy. Macromolecular Bioscience, 2012, 12, 144-164.	2.1	57
41	Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Delivery and Translational Research, 2019, 9, 404-413.	3.0	56
42	Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 23197-23204.	4.0	55
43	Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside. Journal of Materials Research, 2013, 28, 152-164.	1.2	54
44	A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Research, 2015, 8, 1505-1521.	5.8	54
45	Combinatorial Screening of Nanoclay-Reinforced Hydrogels: A Glimpse of the "Holy Grail―in Orthopedic Stem Cell Therapy?. ACS Applied Materials & Interfaces, 2018, 10, 34924-34941.	4.0	54
46	Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. Journal of Controlled Release, 2020, 326, 556-598.	4.8	49
47	Electroconductive multi-functional polypyrrole composites for biomedical applications. Applied Materials Today, 2021, 24, 101117.	2.3	49
48	Biomimetic platelet membrane-coated nanoparticles for targeted therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 1-15.	2.0	49
49	Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose, 2017, 24, 1445-1454.	2.4	45
50	pH‣witch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin. Advanced Healthcare Materials, 2016, 5, 1904-1916.	3.9	44
51	Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. Journal of Controlled Release, 2016, 232, 113-119.	4.8	44
52	Poly(methyl vinyl etherâ€ <i>alt</i> â€maleic acid)â€Functionalized Porous Silicon Nanoparticles for Enhanced Stability and Cellular Internalization. Macromolecular Rapid Communications, 2014, 35, 624-629.	2.0	42
53	Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells. International Journal of Pharmaceutics, 2016, 511, 794-803.	2.6	42
54	Colorectal cancer triple co-culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles. Journal of Controlled Release, 2020, 323, 398-411.	4.8	42

#	Article	IF	CITATIONS
55	Chemically Engineered Immune Cellâ€Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. Advanced Science, 2021, 8, 2002499.	5.6	42
56	Acetalated Dextran Nanoparticles Loaded into an Injectable Alginate Cryogel for Combined Chemotherapy and Cancer Vaccination. Advanced Functional Materials, 2019, 29, 1903686.	7.8	41
57	Molecular beacon strategies for sensing purpose. TrAC - Trends in Analytical Chemistry, 2021, 134, 116143.	5.8	38
58	Novel insights into the treatment of SARS-CoV-2 infection: An overview of current clinical trials. International Journal of Biological Macromolecules, 2020, 165, 18-43.	3.6	35
59	Bispecific monoclonal antibodies for targeted immunotherapy of solid tumors: Recent advances and clinical trials. International Journal of Biological Macromolecules, 2021, 167, 1030-1047.	3.6	34
60	Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. Journal of Controlled Release, 2017, 249, 111-122.	4.8	31
61	Coating Nanoparticles with Plant-Produced Transferrin–Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells. Bioconjugate Chemistry, 2017, 28, 1639-1648.	1.8	31
62	Engineering the pH-Sensitivity of the Graphene and Carbon Nanotube Based Nanomedicines in Smart Cancer Therapy by Grafting Trimetyl Chitosan. Pharmaceutical Research, 2020, 37, 160.	1.7	31
63	Confinement Effects on Drugs in Thermally Hydrocarbonized Porous Silicon. Langmuir, 2014, 30, 2196-2205.	1.6	30
64	Targeted Reinforcement of Macrophage Reprogramming Toward M2 Polarization by IL-4-Loaded Hyaluronic Acid Particles. ACS Omega, 2018, 3, 18444-18455.	1.6	28
65	2D and 3D Covalent Organic Frameworks: Cutting-Edge Applications in Biomedical Sciences. ACS Applied Bio Materials, 2022, 5, 40-58.	2.3	28
66	Preparation, optimization, and in-vitro/in-vivo/ex-vivo characterization of chitosan-heparin nanoparticles: drug-induced gelation. Journal of Pharmacy and Pharmacology, 2013, 65, 1118-1133.	1.2	25
67	Synthesis and therapeutic potential of stimuli-responsive metal-organic frameworks. Chemical Engineering Journal, 2021, 408, 127233.	6.6	25
68	Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chemical Communications, 2021, 57, 4212-4229.	2.2	25
69	A Simple and Sensitive HPLC-UV Method for Quantitation of Lovastatin in Human Plasma: Application to a Bioequivalence Study. Biological and Pharmaceutical Bulletin, 2009, 32, 1600-1603.	0.6	22
70	Sprayable antibacterial Persian gum-silver nanoparticle dressing for wound healing acceleration. Materials Today Communications, 2021, 27, 102225.	0.9	22
71	Microneedle-based technology for cell therapy: current status and future directions. Nanoscale Horizons, 2022, 7, 715-728.	4.1	22
72	βâ€Amyloid Targeting with Twoâ€Dimensional Covalent Organic Frameworks: Multi‣cale In‣ilico Dissection of Nanoâ€Biointerface. ChemBioChem, 2021. 22. 2306-2318.	1.3	21

#	Article	IF	CITATIONS
73	The progress in corneal translational medicine. Biomaterials Science, 2020, 8, 6469-6504.	2.6	20
74	A smart microfluidic platform for rapid multiplexed detection of foodborne pathogens. Food Control, 2020, 114, 107242.	2.8	20
75	Recent progress in the design of DNA vaccines against tuberculosis. Drug Discovery Today, 2020, 25, 1971-1987.	3.2	19
76	Simultaneous doxorubicin encapsulation and in-situ microfluidic micellization of bio-targeted polymeric nanohybrids using dichalcogenide monolayers: A molecular in-silico study. Materials Today Communications, 2021, 26, 101948.	0.9	19
77	Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110353.	2.5	18
78	Controlled Tyrosine Kinase Inhibitor Delivery to Liver Cancer Cells by Gate-Capped Mesoporous Silica Nanoparticles. ACS Applied Bio Materials, 2020, 3, 239-251.	2.3	18
79	Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS Applied Materials & Interfaces, 2020, 12, 44554-44562.	4.0	17
80	Engineering of 2D nanomaterials to trap and kill SARS-CoV-2: a new insight from multi-microsecond atomistic simulations. Drug Delivery and Translational Research, 2021, , 1.	3.0	17
81	A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine, 2017, 12, 1401-1420.	1.7	15
82	Landing a lethal blow on bacterial infections: an emerging advance of nanodots for wound healing acceleration. Nanomedicine, 2019, 14, 2269-2272.	1.7	15
83	Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Current Drug Metabolism, 2013, 14, 28-56.	0.7	15
84	The impact of preparation parameters on typical attributes of chitosan-heparin nanohydrogels: particle size, loading efficiency, and drug release. Drug Development and Industrial Pharmacy, 2013, 39, 1774-1782.	0.9	14
85	In Vitro Evaluation of the Therapeutic Effects of Dualâ€Drug Loaded Spermineâ€Acetalated Dextran Nanoparticles Coated with Tannic Acid for Cardiac Applications. Advanced Functional Materials, 2022, 32, 2109032.	7.8	13
86	Artificial Intelligence Deep Exploration of Influential Parameters on Physicochemical Properties of Curcumin‣oaded Electrospun Nanofibers. Advanced NanoBiomed Research, 2022, 2, .	1.7	13
87	ISOLATION, IDENTIFICATION, AND MEDIA OPTIMIZATION OF HIGH-LEVEL CELLULASE PRODUCTION BYBacillussp. BCCS A3, IN A FERMENTATION SYSTEM USING RESPONSE SURFACE METHODOLOGY. Preparative Biochemistry and Biotechnology, 2014, 44, 107-118.	1.0	12
88	Enterobacter sp. Mediated Synthesis of Biocompatible Nanostructured Iron-Polysaccharide Complexes: a Nutritional Supplement for Iron-Deficiency Anemia. Biological Trace Element Research, 2020, 198, 744-755.	1.9	12
89	MIP-based extraction techniques for the determination of antibiotic residues in edible meat samples: Design, performance & recent developments. Trends in Food Science and Technology, 2022, 119, 164-178.	7.8	12
90	Combined cerium oxide nanocapping and layer-by-layer coating of porous silicon containers for controlled drug release. Journal of Materials Science, 2018, 53, 14975-14988.	1.7	11

#	Article	IF	CITATIONS
91	An insight into gastrointestinal macromolecule delivery using physical oral devices. Drug Discovery Today, 2022, 27, 2309-2321.	3.2	11
92	Bacteria-assisted biogreen synthesis of radical scavenging exopolysaccharide–iron complexes: an oral nano-sized nutritional supplement with high <i>in vivo</i> compatibility. Journal of Materials Chemistry B, 2019, 7, 5211-5221.	2.9	7
93	A self-healable, moldable and bioactive biomaterial gum for personalised and wearable drug delivery. Journal of Materials Chemistry B, 2020, 8, 4340-4356.	2.9	7
94	Bioequivalence evaluation of a triamterene–hydrochlorothiazide generic product: A new bioequivalence index for fixed-dose combinations. Regulatory Toxicology and Pharmacology, 2011, 59, 149-156.	1.3	6
95	Controlled Shape and Nucleation Switching of Interfacially Polymerizable Nanoassemblies by Methyl Substitution. Chemistry of Materials, 2015, 27, 8170-8178.	3.2	6
96	Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods. Nanoscale Research Letters, 2016, 11, 413.	3.1	6
97	Drug Delivery: Thiolation and Cell-Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin (Adv. Funct. Mater. 20/2016). Advanced Functional Materials, 2016, 26, 3374-3374.	7.8	5
98	Revolutionary impact of nanovaccines on immunotherapy. European Journal of Molecular and Clinical Medicine, 2017, 2, 44.	0.5	5
99	Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins. Nano Select, 2022, 3, 1252-1263.	1.9	5
100	Mucus as a Barrier for Biopharmaceuticals and Drug Delivery Systems. , 2014, , 59-97.		4
101	Antiâ€Bacterial Hydrogels: A Hydrogenâ€Bonded Extracellular Matrixâ€Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pHâ€Responsive Wound Healing Acceleration (Adv. Healthcare Mater. 3/2021). Advanced Healthcare Materials, 2021, 10, 2170009.	3.9	4
102	Biocompatibility of porous silicon for biomedical applications. , 2014, , 129-181.		3
103	Targeted Cancer Therapy: pHâ€Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin (Adv. Healthcare Mater. 15/2016). Advanced Healthcare Materials, 2016, 5, 1834-1834.	3.9	3
104	A New Facilitated Solid Phase Extraction Method for Bioavailability Evaluation of Lisinopril in Fasting Healthy Male Volunteers. Current Pharmaceutical Analysis, 2012, 8, 431-439.	0.3	2
105	Drug Delivery: Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications (Adv. Funct. Mater. 10/2015). Advanced Functional Materials, 2015, 25, 1612-1612.	7.8	2
106	Role of molecular simulation in the future of nanomedicine. Nanomedicine, 2021, 16, 2133-2136.	1.7	2
107	Benzathine penicillin G: a model for long-term pharmacokinetic comparison of parenteral long-acting formulations. Journal of Clinical Pharmacy and Therapeutics, 2013, 38, 131-135.	0.7	1

108 Diatomite nanoparticles as potential drug delivery systems. , 2015, , .

#	Article	IF	CITATIONS
109	The Manufacture of Unbreakable Bionics via Multifunctional and Selfâ€Healing Silk–Graphene Hydrogels (Adv. Mater. 35/2021). Advanced Materials, 2021, 33, 2170276.	11.1	1
110	Abstract 221: Tannic Acid Coated Nanoparticles for Cardiac Regeneration. Circulation Research, 2020, 127, .	2.0	1
111	Protein C concentration in newborn infants with sepsis-like illness. Journal of Neonatal-Perinatal Medicine, 2011, 4, 55-58.	0.4	0
112	3.5 Current Trends and Developments for Nanotechnology in Cancer. , 2015, , 290-342.		0
113	From 2D fluidic array screening to 3D bacterial capturing structures in a point of care system for sepsis diagnosis. , 2017, , .		0
114	Nanovaccines: Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy (Adv. Mater. 7/2017). Advanced Materials, 2017, 29, .	11.1	0
115	Copolymers: Drug Delivery. , 0, , 2192-2202.		0