
Richard A Hayes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4722331/publications.pdf Version: 2024-02-01

RICHARD A HAVES

#	Article	IF	CITATIONS
1	Small hive beetle, Aethina tumida (Coleoptera: Nitidulidae): chemical profile of the cuticle and possible chemical mimicry in a honeybee (Apis mellifera) pest. Apidologie, 2022, 53, 1.	2.0	2
2	Paropsis atomaria larval feeding induces a chemical but not a physical response in Corymbia citriodora subsp. variegata. Trees - Structure and Function, 2021, 35, 863-873.	1.9	0
3	Cuticular hydrocarbons of Gonipterus weevils: are there species differences?. Chemoecology, 2021, 31, 159-167.	1.1	5
4	The protein and volatile components of trail mucus in the Common Garden Snail, Cornu aspersum. PLoS ONE, 2021, 16, e0251565.	2.5	9
5	Spotted gums and hybrids: Impact of pests and diseases, ontogeny and climate on tree performance. Forest Ecology and Management, 2020, 472, 118235.	3.2	2
6	Changes in leaf chemistry and anatomy of Corymbia citriodora subsp. variegata (Myrtaceae) in response to native and exotic pathogens. Australasian Plant Pathology, 2020, 49, 641-653.	1.0	2
7	Does disease severity impact on plant foliar chemical and physical responses to two Corymbia citriodora subsp. variegata pathogens?. Industrial Crops and Products, 2020, 148, 112288.	5.2	4
8	Behavioural responses of the small hive beetle to volatile components of fermenting honeybee hive products. Entomologia Experimentalis Et Applicata, 2019, 167, 784-793.	1.4	3
9	Small Hive Beetle (Coleoptera: Nitidulidae) and the Yeast,Kodamaea ohmeri: A Facultative Relationship Under Laboratory Conditions. Journal of Economic Entomology, 2019, 112, 515-524.	1.8	2
10	The response of cerambycid beetles (Coleoptera: Cerambycidae) to longâ€ŧerm fire frequency regimes in subtropical eucalypt forest. Austral Ecology, 2019, 44, 609-620.	1.5	5
11	Associations Between the Small Hive Beetle and the Yeast Kodamaea ohmeri Throughout the Host Life Cycle. Journal of Economic Entomology, 2018, 111, 1501-1508.	1.8	10
12	Performance of Sirex noctilio 's biocontrol agent Deladenus siricidicola , in known and predicted hosts. Biological Control, 2016, 103, 54-61.	3.0	7
13	Optimizing Generic Cerambycid Pheromone Lures for Australian Biosecurity and Biodiversity Monitoring. Journal of Economic Entomology, 2016, 109, 1741-1749.	1.8	18
14	Effect of citrus peel chemicals on <i>Bactrocera tryoni</i> larval survival. Acta Horticulturae, 2015, , 349-356.	0.2	3
15	Electrophysiological activity of the Sirex noctilio ovipositor: You know the drill?. Journal of Asia-Pacific Entomology, 2015, 18, 165-168.	0.9	11
16	Increased attractiveness of honeybee hive product volatiles to adult small hive beetle, <i><scp>A</scp>ethina tumida</i> , resulting from small hive beetle larval infestation. Entomologia Experimentalis Et Applicata, 2015, 155, 240-248.	1.4	11
17	Connecting people and ideas from around the world: global innovation platforms for nextâ€generation ecology and beyond. Ecosphere, 2015, 6, 1-11.	2.2	1,488
18	Eco-Taxonomic Insights into Actinomycete Symbionts of Termites for Discovery of Novel Bioactive Compounds. Advances in Biochemical Engineering/Biotechnology, 2014, 147, 111-135.	1.1	16

RICHARD A HAYES

#	Article	IF	CITATIONS
19	Cuelure but not zingerone make the sex pheromone of male Bactrocera tryoni (Tephritidae: Diptera) more attractive to females. Journal of Insect Physiology, 2014, 68, 36-43.	2.0	48
20	Corymbia phloem phenolics, tannins and terpenoids: interactions with a cerambycid borer. Chemoecology, 2014, 24, 95-103.	1.1	5
21	Relatedness communicated in lemur scent. Die Naturwissenschaften, 2013, 100, 769-777.	1.6	15
22	Consequences of Corymbia (Myrtaceae) hybridisation on leaf-oil profiles. Australian Journal of Botany, 2013, 61, 52.	0.6	8
23	<i>Corymbia</i> leaf oils, latitude, hybrids and herbivory: A test using commonâ€garden field trials. Austral Ecology, 2012, 37, 365-373.	1.5	4
24	Statistics for Terrified Biologists. Austral Ecology, 2011, 36, e4-e4.	1.5	0
25	Analyzing Animal Societies: Quantitative Methods for Vertebrate Social Analysis. Austral Ecology, 2011, 36, e23-e23.	1.5	Ο
26	Microbial biotransformation as a source of chemical diversity in cane toad steroid toxins. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1790-1792.	2.2	29
27	Ontogenetic Variation in the Chemical Defenses of Cane Toads (Bufo marinus): Toxin Profiles and Effects on Predators. Journal of Chemical Ecology, 2009, 35, 391-399.	1.8	146
28	Alarm cues experienced by cane toad tadpoles affect postâ€metamorphic morphology and chemical defences. Functional Ecology, 2009, 23, 126-132.	3.6	85
29	Corymbia Species and Hybrids: Chemical and Physical Foliar Attributes and Implications for Herbivory. Journal of Chemical Ecology, 2009, 35, 1043-1053.	1.8	27
30	Seasonal Responses to Predator Faecal Odours in Australian Native Rodents Vary Between Species. , 2008, , 379-387.		3
31	Use of Chemical Ecology for Control of the Cane Toad?. , 2008, , 409-417.		2
32	Aspects of the biology of the European rabbit (Oryctolagus cuniculus) and rabbit haemorrhagic disease virus (RHDV) in coastal eastern Australia. Wildlife Research, 2007, 34, 398.	1.4	11
33	The response of native Australian rodents to predator odours varies seasonally: a by-product of life history variation?. Animal Behaviour, 2006, 71, 1307-1314.	1.9	55
34	Volatile components of lemur scent secretions vary throughout the year. American Journal of Primatology, 2006, 68, 1202-1207.	1.7	37
35	The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neuroscience and Biobehavioral Reviews, 2005, 29, 1123-1144.	6.1	685
36	The chemistry of scent marking in two lemurs: Lemur catta and Propithecus verreauxi coquereli. , 2005, , 159-167.		5

IF # ARTICLE CITATIONS Anogenital gland secretions of Lemur catta and Propithecus verreauxi coquereli: A preliminary chemical examination. American Journal of Primatology, 2004, 63, 49-62. To fix or not to fix: the role of 2-phenoxyethanol in rabbit, Oryctolagus cuniculus, chin gland secretion. Journal of Chemical Ecology, 2003, 29, 1051-1064. 38 1.8 27 Social structures, genetic structures and dispersal strategies in Australian rabbit (Oryctolagus) Tj ETQq1 1 0.784314 rgBT /Oyerlock Semiochemicals and social signaling in the wild European rabbit in Australia: I. Scent profiles of chin gland secretion from the field. Journal of Chemical Ecology, 2002, 28, 363-384. 40 1.8 15 Semiochemicals and social signaling in the wild European rabbit in Australia: II. Variations in chemical composition of chin gland secretion across sampling sites. Journal of Chemical Ecology, 2002, 28, 1.8 23 2613-2625. Biological control of the rabbit in Australia: lessons not learned?. Trends in Microbiology, 2001, 9, 459-460. 42 7.7 12 Increased Social Dominance in Male Rabbits, Oryctolagus Cuniculus, is Associated with Increased Secretion of 2-Phenoxy Ethanol from the Chin Cland. , 2001, , 335-341.

RICHARD A HAYES