Zhen Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4721624/publications.pdf Version: 2024-02-01

	186265	133252
3,544	28	59
citations	h-index	g-index
91	91	2234
docs citations	times ranked	citing authors
	citations 91	3,54428citationsh-index9191

ΖΗΕΝ ΟΛΟ

#	Article	IF	CITATIONS
1	First Observation of the Greisen-Zatsepin-Kuzmin Suppression. Physical Review Letters, 2008, 100, 101101.	7.8	568
2	Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 Î ³ -ray Galactic sources. Nature, 2021, 594, 33-36.	27.8	262
3	Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye Experiment. Physical Review Letters, 2004, 92, 151101.	7.8	233
4	Stress-driven buckling patterns in spheroidal core/shell structures. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19132-19135.	7.1	207
5	Measurement of the Cosmicâ€Ray Energy Spectrum and Composition from 1017to 1018.3eV Using a Hybrid Technique. Astrophysical Journal, 2001, 557, 686-699.	4.5	173
6	A Study of the Composition of Ultra–Highâ€Energy Cosmic Rays Using the Highâ€Resolution Fly's Eye. Astrophysical Journal, 2005, 622, 910-926.	4.5	170
7	Layout and performance of RPCs used in the Argo-YBJ experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 562, 92-96.	1.6	160
8	Knee of the cosmic hydrogen and helium spectrum below 1ÂPeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO. Physical Review D, 2015, 92, .	4.7	94
9	Peta–electron volt gamma-ray emission from the Crab Nebula. Science, 2021, 373, 425-430.	12.6	86
10	Study of Small-Scale Anisotropy of Ultra-High-Energy Cosmic Rays Observed in Stereo by the High Resolution Fly's Eye Detector. Astrophysical Journal, 2004, 610, L73-L76.	4.5	79
11	IDENTIFICATION OF THE TeV GAMMA-RAY SOURCE ARGO J2031+4157 WITH THE CYGNUS COCOON. Astrophysical Journal, 2014, 790, 152.	4.5	73
12	LONG-TERM MONITORING OF THE TeV EMISSION FROM Mrk 421 WITH THE ARGO-YBJ EXPERIMENT. Astrophysical Journal, 2011, 734, 110.	4.5	67
13	Observation of the Crab Nebula with LHAASO-KM2A â^' a performance study *. Chinese Physics C, 2021, 45, 025002.	3.7	67
14	Search for steady emission of 10-TeV gamma rays from the Crab Nebula, Cygnus X-3, and Hercules X-1 using the Tibet air shower array. Physical Review Letters, 1992, 69, 2468-2471.	7.8	66
15	TeV GAMMA-RAY SURVEY OF THE NORTHERN SKY USING THE ARGO-YBJ DETECTOR. Astrophysical Journal, 2013, 779, 27.	4.5	64
16	Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment. Physical Review D, 2011, 84, .	4.7	63
17	Medium scale anisotropy in the TeV cosmic ray flux observed by ARGO-YBJ. Physical Review D, 2013, 88, .	4.7	57
18	Proton-air cross section measurement with the ARGO-YBJ cosmic ray experiment. Physical Review D, 2009, 80, .	4.7	56

#	Article	IF	CITATIONS
19	Chapter 1 LHAASO Instruments and Detector technology *. Chinese Physics C, 2022, 46, 030001.	3.7	54
20	OBSERVATION OF TeV GAMMA RAYS FROM THE CYGNUS REGION WITH THE ARGO-YBJ EXPERIMENT. Astrophysical Journal Letters, 2012, 745, L22.	8.3	51
21	Temperature effect on RPC performance in the ARGO-YBJ experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608, 246-250.	1.6	49
22	Light-component spectrum of the primary cosmic rays in the multi-TeV region measured by the ARGO-YBJ experiment. Physical Review D, 2012, 85, .	4.7	49
23	LONG-TERM MONITORING OF MRK 501 FOR ITS VERY HIGH ENERGY Î ³ EMISSION AND A FLARE IN 2011 OCTOBER Astrophysical Journal, 2012, 758, 2.	R. _{4.5}	49
24	A measurement of the average longitudinal development profile of cosmic ray air showers between 1017 and 1018 eV. Astroparticle Physics, 2001, 16, 1-11.	4.3	43
25	OBSERVATION OF THE TeV GAMMA-RAY SOURCE MGRO J1908+06 WITH ARGO-YBJ. Astrophysical Journal, 2012, 760, 110.	4.5	38
26	Testing Lorentz invariance with the ultrahigh energy cosmic ray spectrum. Physical Review D, 2009, 79,	4.7	37
27	Detection of thermal neutrons with the PRISMA-YBJ array in extensive air showers selected by the ARGO-YBJ experiment. Astroparticle Physics, 2016, 81, 49-60.	4.3	36
28	Properties and performance of two wide field of view Cherenkov/fluorescence telescope array prototypes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 629, 57-65.	1.6	35
29	Energy spectrum of cosmic protons and helium nuclei by a hybrid measurement at 4300 m a.s.l Chinese Physics C, 2014, 38, 045001.	3.7	31
30	Discovery of the Ultrahigh-energy Gamma-Ray Source LHAASO J2108+5157. Astrophysical Journal Letters, 2021, 919, L22.	8.3	28
31	Ultra high energy ντdetection with a cosmic ray tau neutrino telescope using fluorescence/Cerenkov light technique. Journal of Physics G: Nuclear and Particle Physics, 2005, 31, 571-582.	3.6	25
32	OBSERVATION OF TeV GAMMA RAYS FROM THE UNIDENTIFIED SOURCE HESS J1841–055 WITH THE ARGO-YBJ EXPERIMENT. Astrophysical Journal, 2013, 767, 99.	4.5	25
33	Status of LHAASO updates from ARGO-YBJ. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 742, 95-98.	1.6	25
34	The analog Resistive Plate Chamber detector of the ARGO-YBJ experiment. Astroparticle Physics, 2015, 67, 47-61.	4.3	25
35	MEAN INTERPLANETARY MAGNETIC FIELD MEASUREMENT USING THE ARGO-YBJ EXPERIMENT. Astrophysical Journal, 2011, 729, 113.	4.5	23
36	Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector. Physical Review D, 2012, 85, .	4.7	22

#	Article	IF	CITATIONS
37	Discovery of a New Gamma-Ray Source, LHAASO J0341+5258, with Emission up to 200 TeV. Astrophysical Journal Letters, 2021, 917, L4.	8.3	21
38	Highlights from the ARGO-YBJ experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 661, S50-S55.	1.6	20
39	Exploring Lorentz Invariance Violation from Ultrahigh-Energy <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi> Rays Observed by LHAASO. Physical Review Letters, 2022, 128, 051102.</mml:math 	7.8	19
40	A search for arrival direction clustering in the HiRes-I monocular data above 1019.5 eV. Astroparticle Physics, 2004, 22, 139-149.	4.3	18
41	Performance of a prototype water Cherenkov detector for LHAASO project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 644, 11-17.	1.6	18
42	Construction and on-site performance of the LHAASO WFCTA camera. European Physical Journal C, 2021, 81, 1.	3.9	18
43	Seasonal and Lunar Month Periods Observed in Natural Neutron Flux at High Altitude. Pure and Applied Geophysics, 2017, 174, 2763-2771.	1.9	17
44	Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle *. Chinese Physics C, 2021, 45, 085002.	3.7	16
45	Intraday optical variability of the BL Lacertae object S5 0716+714. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3111-3115.	4.4	14
46	THE ARGO-YBJ EXPERIMENT PROGRESSES AND FUTURE EXTENSION. International Journal of Modern Physics D, 2011, 20, 1713-1721.	2.1	12
47	Response of the environmental thermal neutron flux to earthquakes. Journal of Environmental Radioactivity, 2019, 208-209, 105981.	1.7	11
48	Cosmic-ray double-corel ³ -family events at ultrahigh energies. Physical Review D, 1997, 56, 7361-7375.	4.7	10
49	Performance of SiPMs and pre-amplifier for the wide field of view Cherenkov telescope array of LHAASO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 899, 94-100.	1.6	10
50	Absolute calibration of LHAASO WFCTA camera based on LED. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1021, 165824.	1.6	10
51	The Correlated Multi-color Optical Variations of BL Lac Object S5 0716+714. Publications of the Astronomical Society of Australia, 2010, 27, 296-301.	3.4	9
52	The performance of a prototype array of water Cherenkov detectors for the LHAASO project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 724, 12-19.	1.6	9
53	Calibration of the air shower energy scale of the water and air Cherenkov techniques in the LHAASO experiment. Physical Review D, 2021, 104, .	4.7	9
54	The Status of the ARGO Experiment at YBJ. Nuclear Physics, Section B, Proceedings Supplements, 2007, 166, 96-102.	0.4	8

#	Article	IF	CITATIONS
55	Photomultiplier tube selection for the Wide Field of view Cherenkov/fluorescence Telescope Array of the Large High Altitude Air Shower Observatory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 819, 175-181.	1.6	8
56	Quark compositeness, new physics, and ultrahigh-energy cosmic-ray double-core γ-family events. Physical Review Letters, 1994, 72, 1794-1797.	7.8	7
57	Readout electronics for the Wide Field of view Cherenkov/Fluorescence Telescope Array. Journal of Instrumentation, 2015, 10, P08003-P08003.	1.2	7
58	Expected energy spectrum of cosmic ray protons and helium below 4 PeV measured by LHAASO *. Chinese Physics C, 2019, 43, 075001.	3.7	7
59	An ultra-high-energy Î ³ -ray telescope at 4,410 m. Nature Astronomy, 2021, 5, 849-849.	10.1	7
60	An optical design of the telescope in the Wide Field of View Cherenkov/Fluorescence Telescope Array. Astroparticle Physics, 2015, 67, 8-17.	4.3	6
61	Simulation of the cosmic ray tau neutrino telescope (CRTNT) experiment. Journal of Physics G: Nuclear and Particle Physics, 2009, 36, 075201.	3.6	5
62	The present status of the Telescope Array experiment. Nuclear Physics, Section B, Proceedings Supplements, 2009, 190, 26-31.	0.4	5
63	Multi-band optical variability of BL Lac object OQ 530. Research in Astronomy and Astrophysics, 2010, 10, 653-662.	1.7	5
64	The long-term optical behavior of BL Lac object S5 0716+714. Science China: Physics, Mechanics and Astronomy, 2010, 53, 1370-1374.	5.1	4
65	EAS Arrays at High Altitudes Start the Era of UHE Î ³ -ray Astronomy. Universe, 2021, 7, 339.	2.5	4
66	Chapter 4 Cosmic-Ray Physics *. Chinese Physics C, 2022, 46, 030004.	3.7	4
67	Geometry and optics calibration of WFCTA prototype telescopes using star light. Chinese Physics C, 2011, 35, 478-482.	3.7	3
68	Multi-wavelength study of MGRO J2019+37. Chinese Physics C, 2014, 38, 085001.	3.7	3
69	A calibration of WFCTA prototype telescopes using <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml38" display="inline" overflow="scroll" altimg="si14.gif"><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mn>2laser. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers,</mml:mn></mml:mrow></mml:msub></mml:math 	ml:minos <td>mlanrow></td>	ml a nrow>
70	Detectors and Associated Equipment, 2016, 677, 276,267. Studying the Mass Composition of Cosmic Rays with Energies of 1015–1017 eV in the PRISMA Project. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 632-634.	0.6	3
71	Intrinsic linearity of bakelite Resistive Plate Chambers operated in streamer mode. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 947, 162746.	1.6	3
72	SiPM-Based Camera Design and Development for the Image Air Cherenkov Telescope of LHAASO. Springer Proceedings in Physics, 2018, , 17-21.	0.2	3

#	Article	IF	CITATIONS
73	SIGNAL OF QUARK SUBSTRUCTURE IN HADRONIC INTERACTIONS AT SMALL SCATTERING ANGLES. Modern Physics Letters A, 1995, 10, 267-272.	1.2	2
74	The Cosmic Ray Tau Neutrino Telescope (CRTNT) project -tau neutrino detection using fluorescence/Cerenkov light detectors. Nuclear Physics, Section B, Proceedings Supplements, 2006, 151, 287-290.	0.4	2
75	GMF model dependence of correlations between BL Lacs and ultra high energy cosmic rays. Astroparticle Physics, 2007, 28, 82-88.	4.3	2
76	Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 795, 409-417.	1.6	2
77	LHAASO: A milestone of the cosmic ray research. Chinese Science Bulletin, 2022, 67, 1558-1566.	0.7	2
78	The long-term color variability of the BL Lac object OQ 530. Astronomy Reports, 2011, 55, 1074-1077.	0.9	1
79	Cosmic Ray Experiments in the Era of LHC. , 2011, , .		1
80	Measurement of knees of the spectra of heavy nuclei above 10 PeV with LHAASO. EPJ Web of Conferences, 2019, 208, 14002.	0.3	1
81	Measurement of the knees of proton and H&He spectra below 1 PeV. Journal of Physics: Conference Series, 2020, 1342, 012009.	0.4	1
82	Geometrical reconstruction of fluorescence events observed by the LHAASO experiment *. Chinese Physics C, 2021, 45, 045101.	3.7	1
83	A dynamic range extension system for LHAASO WCDA-1. Radiation Detection Technology and Methods, 2021, 5, 520-530.	0.8	1
84	SiPM-based Camera Research and Development for the Wide Field of View Cherenkov Telescope Array of LHAASO. , 2017, , .		1
85	Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA. Radiation Detection Technology and Methods, 2021, 5, 531.	0.8	1
86	Search for GRB counterparts using the ARGO-YBJ experiment in shower mode. , 2008, , .		0
87	ARGO-YBJ: A MULTI-PURPOSE EXPERIMENT OPERATION FOR 5 YEARS. International Journal of Modern Physics D, 2013, 22, 1360013.	2.1	0
88	Simulating a Measurement of the 2nd Knee in the Cosmic Ray Spectrum with an Atmospheric Fluorescence Telescope Tower Array. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	0
89	Highlights of the ARGO-YBJ Experiment at 4,300 m a.s.l Brazilian Journal of Physics, 2014, 44, 494-503.	1.4	0
90	Simulation of the Galactic Cosmic Ray Shadow of the Sun. Chinese Physics Letters, 2017, 34, 129601.	3.3	0

#	Article	IF	CITATIONS
91	Design and Testing of the Front-End Electronics of WCDA in LHAASO. IEEE Transactions on Nuclear Science, 2021, 68, 2257-2267.	2.0	0