## Jacques Le Pendu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4720399/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Low Levels of Natural Anti-α-N-Acetylgalactosamine (Tn) Antibodies Are Associated With COVID-19.<br>Frontiers in Microbiology, 2021, 12, 641460.                                                         | 3.5 | 11        |
| 2  | Covid-19 and blood groups: ABO antibody levels may also matter. International Journal of Infectious<br>Diseases, 2021, 104, 242-249.                                                                     | 3.3 | 52        |
| 3  | ABO Blood Types and COVID-19: Spurious, Anecdotal, or Truly Important Relationships? A Reasoned<br>Review of Available Data. Viruses, 2021, 13, 160.                                                     | 3.3 | 72        |
| 4  | ABO Blood Group Incompatibility Protects Against SARS-CoV-2 Transmission. Frontiers in Microbiology, 2021, 12, 799519.                                                                                   | 3.5 | 23        |
| 5  | Fondness for sugars of enteric viruses confronts them with human glycans genetic diversity. Human<br>Genetics, 2020, 139, 903-910.                                                                       | 3.8 | 33        |
| 6  | Host-Range Shift Between Emerging P[8]-4 Rotavirus and Common P[8] and P[4] Strains. Journal of Infectious Diseases, 2020, 222, 836-839.                                                                 | 4.0 | 8         |
| 7  | Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2. PLoS Pathogens, 2020, 16, e1008556.                                                | 4.7 | 83        |
| 8  | FUT2, Secretor Status and FUT3 Polymorphisms of Children with Acute Diarrhea Infected with<br>Rotavirus and Norovirus in Brazil. Viruses, 2020, 12, 1084.                                                | 3.3 | 20        |
| 9  | The Coxsackievirus and Adenovirus Receptor, a Required Host Factor for Recovirus Infection, Is a<br>Putative Enteric Calicivirus Receptor. Journal of Virology, 2019, 93, .                              | 3.4 | 16        |
| 10 | Dual Recognition of Sialic Acid and αGal Epitopes by the VP8* Domains of the Bovine Rotavirus G6P[5]<br>WC3 and of Its Mono-reassortant G4P[5] RotaTeq Vaccine Strains. Journal of Virology, 2019, 93, . | 3.4 | 16        |
| 11 | Host-Specific Glycans Are Correlated with Susceptibility to Infection by Lagoviruses, but Not with<br>Their Virulence. Journal of Virology, 2018, 92, .                                                  | 3.4 | 15        |
| 12 | Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. Scientific Reports, 2018, 8, 12961.                            | 3.3 | 48        |
| 13 | The wide utility of rabbits as models of human diseases. Experimental and Molecular Medicine, 2018, 50, 1-10.                                                                                            | 7.7 | 103       |
| 14 | Bovine Nebovirus Interacts with a Wide Spectrum of Histo-Blood Group Antigens. Journal of Virology,<br>2018, 92, .                                                                                       | 3.4 | 16        |
| 15 | Sustained fecal-oral human-to-human transmission following a zoonotic event. Current Opinion in<br>Virology, 2017, 22, 1-6.                                                                              | 5.4 | 46        |
| 16 | Proposal for a unified classification system and nomenclature of lagoviruses. Journal of General<br>Virology, 2017, 98, 1658-1666.                                                                       | 2.9 | 148       |
| 17 | Anti-viral Effect of Bifidobacterium adolescentis against Noroviruses. Frontiers in Microbiology,<br>2016, 7, 864.                                                                                       | 3.5 | 33        |
| 18 | Carcinoma-associated fucosylated antigens are markers of the epithelial state and can contribute to cell adhesion through <i>CLEC17A</i> (Prolectin). Oncotarget, 2016, 7, 14064-14082.                  | 1.8 | 17        |

Jacques Le Pendu

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat<br>stress. Frontiers in Microbiology, 2015, 6, 659.                                                       | 3.5 | 89        |
| 20 | Tulane Virus as a Potential Surrogate To Mimic Norovirus Behavior in Oysters. Applied and<br>Environmental Microbiology, 2015, 81, 5249-5256.                                                               | 3.1 | 34        |
| 21 | Evidence for Human Norovirus Infection of Dogs in the United Kingdom. Journal of Clinical<br>Microbiology, 2015, 53, 1873-1883.                                                                             | 3.9 | 34        |
| 22 | Neofunctionalization of the Sec1 α1,2fucosyltransferase Paralogue in Leporids Contributes to Glycan<br>Polymorphism and Resistance to Rabbit Hemorrhagic Disease Virus. PLoS Pathogens, 2015, 11, e1004759. | 4.7 | 7         |
| 23 | A Recombinant Fungal Lectin for Labeling Truncated Glycans on Human Cancer Cells. PLoS ONE, 2015, 10, e0128190.                                                                                             | 2.5 | 25        |
| 24 | Emergence of Pathogenicity in Lagoviruses: Evolution from Pre-existing Nonpathogenic Strains or through a Species Jump?. PLoS Pathogens, 2015, 11, e1005087.                                                | 4.7 | 31        |
| 25 | Genogroup IV and VI Canine Noroviruses Interact with Histo-Blood Group Antigens. Journal of Virology, 2014, 88, 10377-10391.                                                                                | 3.4 | 47        |
| 26 | Detection of RHDV strains in the Iberian hare (Lepus granatensis): earliest evidence of rabbit lagovirus<br>cross-species infection. Veterinary Research, 2014, 45, 94.                                     | 3.0 | 24        |
| 27 | Increase in Genogroup II.4 Norovirus Host Spectrum by CagA-Positive Helicobacter pylori Infection.<br>Journal of Infectious Diseases, 2014, 210, 183-191.                                                   | 4.0 | 16        |
| 28 | A FUT2 Gene Common Polymorphism Determines Resistance to Rotavirus A of the P[8] Genotype.<br>Journal of Infectious Diseases, 2014, 209, 1227-1230.                                                         | 4.0 | 136       |
| 29 | Molecular evolution and antigenic variation of European brown hare syndrome virus (EBHSV).<br>Virology, 2014, 468-470, 104-112.                                                                             | 2.4 | 21        |
| 30 | Bioaccumulation Efficiency, Tissue Distribution, and Environmental Occurrence of Hepatitis E Virus in<br>Bivalve Shellfish from France. Applied and Environmental Microbiology, 2014, 80, 4269-4276.        | 3.1 | 60        |
| 31 | Host–pathogen co-evolution and glycan interactions. Current Opinion in Virology, 2014, 7, 88-94.                                                                                                            | 5.4 | 62        |
| 32 | Blood Group Substances as Potential Therapeutic Agents for the Prevention and Treatment of<br>Infection with Noroviruses Proving Novel Binding Patterns in Human Tissues. PLoS ONE, 2014, 9,<br>e89071.     | 2.5 | 14        |
| 33 | Infectivity of GI and GII noroviruses established from oyster related outbreaks. Epidemics, 2013, 5, 98-110.                                                                                                | 3.0 | 78        |
| 34 | Chronic or Accidental Exposure of Oysters to Norovirus: Is There Any Difference in Contamination?.<br>Journal of Food Protection, 2013, 76, 505-509.                                                        | 1.7 | 7         |
| 35 | Noroviruses and histoâ€blood groups: the impact of common host genetic polymorphisms on virus<br>transmission and evolution. Reviews in Medical Virology, 2013, 23, 355-366.                                | 8.3 | 75        |
| 36 | The VP8* Domain of Neonatal Rotavirus Strain G10P[11] Binds to Type II Precursor Glycans. Journal of Virology, 2013, 87, 7255-7264.                                                                         | 3.4 | 74        |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Molecular Characterization of Noroviruses and HBGA from Infected Quilombola Children in Espirito<br>Santo State, Brazil. PLoS ONE, 2013, 8, e69348.                                                                                                      | 2.5  | 17        |
| 38 | Fucose-binding Lectin from Opportunistic Pathogen Burkholderia ambifaria Binds to Both Plant and<br>Human Oligosaccharidic Epitopes. Journal of Biological Chemistry, 2012, 287, 4335-4347.                                                              | 3.4  | 92        |
| 39 | 3-Fluoro- and 3,3-Difluoro-3,4-dideoxy-KRN7000 Analogues as New Potent Immunostimulator Agents:<br>Total Synthesis and Biological Evaluation in Human Invariant Natural Killer T Cells and Mice. Journal<br>of Medicinal Chemistry, 2012, 55, 1227-1241. | 6.4  | 21        |
| 40 | Transmission of viruses through shellfish: when specific ligands come into play. Current Opinion in Virology, 2012, 2, 103-110.                                                                                                                          | 5.4  | 151       |
| 41 | Shared Human/Rabbit Ligands for Rabbit Hemorrhagic Disease Virus. Emerging Infectious Diseases, 2012,<br>18, 518-519.                                                                                                                                    | 4.3  | 1         |
| 42 | Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature, 2012, 485, 256-259.                                                                                                              | 27.8 | 283       |
| 43 | Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review. Veterinary<br>Research, 2012, 43, 12.                                                                                                                          | 3.0  | 302       |
| 44 | Strain-Dependent Norovirus Bioaccumulation in Oysters. Applied and Environmental Microbiology, 2011, 77, 3189-3196.                                                                                                                                      | 3.1  | 115       |
| 45 | Histo-Blood Group Antigens Act as Attachment Factors of Rabbit Hemorrhagic Disease Virus Infection<br>in a Virus Strain-Dependent Manner. PLoS Pathogens, 2011, 7, e1002188.                                                                             | 4.7  | 94        |
| 46 | Infection-associated FUT2 (Fucosyltransferase 2) genetic variation and impact on functionality assessed by in vivo studies. Glycoconjugate Journal, 2010, 27, 61-68.                                                                                     | 2.7  | 29        |
| 47 | Distribution in Tissue and Seasonal Variation of Norovirus Genogroup I and II Ligands in Oysters.<br>Applied and Environmental Microbiology, 2010, 76, 5621-5630.                                                                                        | 3.1  | 128       |
| 48 | Bovine Norovirus: Carbohydrate Ligand, Environmental Contamination, and Potential Cross-Species<br>Transmission via Oysters. Applied and Environmental Microbiology, 2010, 76, 6404-6411.                                                                | 3.1  | 38        |
| 49 | Comprehensive Analysis of a Norovirus-Associated Gastroenteritis Outbreak, from the Environment to the Consumer. Journal of Clinical Microbiology, 2010, 48, 915-920.                                                                                    | 3.9  | 75        |
| 50 | Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology, 2009, 19, 309-320.                                                                                                                                                             | 2.5  | 93        |
| 51 | Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology, 2009, 19, 1525-1536.                                                                                    | 2.5  | 93        |
| 52 | The αGal Epitope of the Histo-Blood Group Antigen Family Is a Ligand for Bovine Norovirus Newbury2<br>Expected to Prevent Cross-Species Transmission. PLoS Pathogens, 2009, 5, e1000504.                                                                 | 4.7  | 71        |
| 53 | Norwalk virus-like particles bind specifically to A, H and difucosylated Lewis but not to B histo-blood group active glycosphingolipids. Glycoconjugate Journal, 2009, 26, 1171-1180.                                                                    | 2.7  | 27        |
| 54 | Widespread Gene Conversion of Alpha-2-Fucosyltransferase Genes in Mammals. Journal of Molecular Evolution, 2009, 69, 22-31.                                                                                                                              | 1.8  | 24        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Evolution of microparasites in spatially and genetically structured host populations: The example of RHDV infecting rabbits. Journal of Theoretical Biology, 2009, 257, 212-227.                                                    | 1.7 | 12        |
| 56 | Focus on the Controversial Activation of Human iNKT Cells by 4-Deoxy Analogue of KRN7000. Journal of Medicinal Chemistry, 2009, 52, 4960-4963.                                                                                      | 6.4 | 27        |
| 57 | Norwalk virus: How infectious is it?. Journal of Medical Virology, 2008, 80, 1468-1476.                                                                                                                                             | 5.0 | 1,019     |
| 58 | Association between expression of the H histo-blood group antigen, Â1,2fucosyltransferases<br>polymorphism of wild rabbits, and sensitivity to rabbit hemorrhagic disease virus. Glycobiology, 2008,<br>19, 21-28.                  | 2.5 | 37        |
| 59 | Inhibition of the interaction between the SARS-CoV Spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology, 2008, 18, 1085-1093.                                                                 | 2.5 | 306       |
| 60 | Long-term evolution of the CAZY glycosyltransferase 6 (ABO) gene family from fishes to mammals—a<br>birth-and-death evolution model. Glycobiology, 2007, 17, 516-528.                                                               | 2.5 | 49        |
| 61 | Characterization of the carcinoma-associated Tk antigen in helminth parasites. Experimental Parasitology, 2007, 116, 129-136.                                                                                                       | 1.2 | 19        |
| 62 | Mendelian resistance to human norovirus infections. Seminars in Immunology, 2006, 18, 375-386.                                                                                                                                      | 5.6 | 142       |
| 63 | Norwalk Virus–specific Binding to Oyster Digestive Tissues. Emerging Infectious Diseases, 2006, 12,<br>931-936.                                                                                                                     | 4.3 | 218       |
| 64 | Bile-salt-stimulated lipase and mucins from milk of â€~secretor' mothers inhibit the binding of Norwalk<br>virus capsids to their carbohydrate ligands. Biochemical Journal, 2006, 393, 627-634.                                    | 3.7 | 72        |
| 65 | Influence of the CombinedABO, FUT2,andFUT3Polymorphism on Susceptibility to Norwalk Virus<br>Attachment. Journal of Infectious Diseases, 2005, 192, 1071-1077.                                                                      | 4.0 | 108       |
| 66 | Expression of sialyl-Tn epitopes on $\hat{l}^21$ integrin alters epithelial cell phenotype, proliferation and haptotaxis. Journal of Cell Science, 2004, 117, 5059-5069.                                                            | 2.0 | 68        |
| 67 | Two new FUT2 (fucosyltransferase 2 gene) missense polymorphisms, 739G→A and 839T→C, are partly<br>responsible for non-secretor status in a Caucasian population from Northern Portugal. Biochemical<br>Journal, 2004, 383, 469-474. | 3.7 | 32        |
| 68 | Lewis enzyme (α1–3/4 fucosyltransferase) polymorphisms do not explain the Lewis phenotype in the gastric mucosa of a Portuguese population. Journal of Human Genetics, 2003, 48, 183-189.                                           | 2.3 | 16        |
| 69 | Cloning of a rat gene encoding the histo-blood group B enzyme: rats have more than one Abo gene.<br>Glycobiology, 2003, 13, 919-928.                                                                                                | 2.5 | 9         |
| 70 | Expression of histo-blood group A antigen increases resistance to apoptosis and facilitates escape from immune control of rat colon carcinoma cells. Glycobiology, 2002, 12, 851-856.                                               | 2.5 | 39        |
| 71 | Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology, 2002, 122, 1967-1977.                                                                       | 1.3 | 446       |
| 72 | Cloning of a rat gene encoding the histo-blood group A enzyme. FEBS Journal, 2002, 269, 4040-4047.                                                                                                                                  | 0.2 | 13        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie, 2001, 83, 565-573.                                                | 2.6 | 272       |
| 74 | Comparison of the three rat GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferases FTA, FTB and FTC.<br>FEBS Journal, 2001, 268, 1006-1019.                                                                  | 0.2 | 21        |
| 75 | Fluorescent carbohydrate probes for cell lectins. Spectrochimica Acta - Part A: Molecular and<br>Biomolecular Spectroscopy, 2001, 57, 2285-2296.                                                             | 3.9 | 17        |
| 76 | ABH and Lewis histo-blood group antigens in cancer. Apmis, 2001, 109, 9-26.                                                                                                                                  | 2.0 | 188       |
| 77 | Role forα1,2-fucosyltransferase and histo-blood group antigen H type 2 in resistance of rat colon carcinoma cells to 5-fluorouracil. International Journal of Cancer, 2000, 85, 142-148.                     | 5.1 | 20        |
| 78 | Susceptibility of rat colon carcinoma cells to lymphokine activated killer-mediated cytotoxicity is decreased by ?1,2-fucosylation. , 2000, 86, 713-717.                                                     |     | 12        |
| 79 | Â1,2Fucosyltransferase increases resistance to apoptosis of rat colon carcinoma cells. Glycobiology,<br>2000, 10, 375-382.                                                                                   | 2.5 | 63        |
| 80 | Binding of Rabbit Hemorrhagic Disease Virus to Antigens of the ABH Histo-Blood Group Family. Journal of Virology, 2000, 74, 11950-11954.                                                                     | 3.4 | 130       |
| 81 | Role for α1,2-fucosyltransferase and histo-blood group antigen H type 2 in resistance of rat colon carcinoma cells to 5-fluorouracil. International Journal of Cancer, 2000, 85, 142.                        | 5.1 | 18        |
| 82 | Glycosylation alterations of cells in late phase apoptosis from colon carcinomas. Glycobiology, 1999, 9, 1337-1345.                                                                                          | 2.5 | 53        |
| 83 | A rat experimental model for the design of vaccines against tumor associated antigens Tn and<br>Sialyl-Tn. Glycoconjugate Journal, 1999, 16, 681-684.                                                        | 2.7 | 2         |
| 84 | Increased tumorigenicity of rat colon carcinoma cells after ?1,2-fucosyltransferaseFTA anti-sense cDNA transfection. , 1999, 80, 606-611.                                                                    |     | 21        |
| 85 | Carbohydrate-Based Probes for Detection of Cellular Lectins. Analytical Biochemistry, 1998, 265, 282-289.                                                                                                    | 2.4 | 30        |
| 86 | Increase of rat colon carcinoma cells tumorigenicity by α(l–2) fucosyltransferase gene transfection.<br>Glycobiology, 1997, 7, 221-229.                                                                      | 2.5 | 69        |
| 87 | Expression of A and H blood-group and of CD44 antigens during chemical rat colonic carcinogenesis.<br>Glycoconjugate Journal, 1997, 14, 801-808.                                                             | 2.7 | 12        |
| 88 | Immunization against a rat colon carcinoma by sodium butyrate-treated cells but not by interleukin<br>2-secreting cells. Gastroenterology, 1995, 109, 1555-1565.                                             | 1.3 | 12        |
| 89 | Expression of the 100-kDa glucose-regulated protein (grp100/endoplasmin) is associated with<br>tumorigenicity in a model of rat colon adenocarcinoma. International Journal of Cancer, 1994, 56,<br>400-405. | 5.1 | 31        |
| 90 | An interleukin 2/sodium butyrate combination as immunotherapy for rat colon cancer peritoneal carcinomatosis. Gastroenterology, 1994, 107, 1697-1708.                                                        | 1.3 | 66        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Identification and characterization of a rat protein (P 105) auto-antigenic in rats bearing a progressive syngeneic colon carcinoma. International Journal of Cancer, 1992, 50, 315-320.                                                        | 5.1 | 1         |
| 92  | Relationship between sensitivity to natural killer cells and MHC class-I antigen expression in colon carcinoma cell lines. International Journal of Cancer, 1992, 50, 659-664.                                                                  | 5.1 | 7         |
| 93  | Involvement of histo-blood-group antigens in the susceptibility of colon carcinoma cells to natural killer-mediated cytotoxicity. International Journal of Cancer, 1992, 52, 609-618.                                                           | 5.1 | 29        |
| 94  | Red cell H-deficient, salivary ABH secretor phenotype of Reunion island. Genetic control of the expression of H antigen in the skin. Glycoconjugate Journal, 1988, 5, 499-512.                                                                  | 2.7 | 30        |
| 95  | Expression of ABH and X (Lex) antigens in various cells. Biochimie, 1988, 70, 1613-1618.                                                                                                                                                        | 2.6 | 12        |
| 96  | Heterogeneity of the ABH antigenic determinants expressed in human pyloric and duodenal mucosae.<br>Glycoconjugate Journal, 1986, 3, 187-202.                                                                                                   | 2.7 | 46        |
| 97  | A new anti-H lectin from the seeds ofGalactia tenuiflora. Glycoconjugate Journal, 1986, 3, 203-216.                                                                                                                                             | 2.7 | 15        |
| 98  | Monoclonal antibodies specific for type 3 and type 4 chain-based blood group determinants:<br>Relationship to the A1 and A2 subgroups. Glycoconjugate Journal, 1986, 3, 255-271.                                                                | 2.7 | 64        |
| 99  | Genetics of ABO, H, Lewis, X and Related Antigens. Vox Sanguinis, 1986, 51, 161-171.                                                                                                                                                            | 1.5 | 349       |
| 100 | Monoclonal antibody 101 that precipitates the glycoprotein receptor for epidermal growth factor is<br>directed against the Y antigen, not the H type 1 antigen. Carbohydrate Research, 1985, 141, 347-349.                                      | 2.3 | 37        |
| 101 | INFLUENCE OF THE ORIGINAL DISEASE, RACE, AND CENTER ON THE OUTCOME OF KIDNEY TRANSPLANTATION.<br>Transplantation, 1982, 33, 22-26.                                                                                                              | 1.0 | 23        |
| 102 | Synthesis of type 2 human blood-group antigenic determinants. The H, X, and Y haptens and variations of the H type 2 determinant as probes for the combining site of the lectin I of Ulex europaeus. Carbohydrate Research, 1982, 109, 109-142. | 2.3 | 213       |