
Daniel Hofius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4719871/publications.pdf Version: 2024-02-01

DANIEL HOELLS

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis. Cell, 2009, 137, 773-783.	28.9	348
3	Specific Roles of α- and γ-Tocopherol in Abiotic Stress Responses of Transgenic Tobacco. Plant Physiology, 2007, 143, 1720-1738.	4.8	236
4	Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2026-E2035.	7.1	207
5	Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor. PLoS Pathogens, 2010, 6, e1001137.	4.7	170
6	RNAi-Mediated Tocopherol Deficiency Impairs Photoassimilate Export in Transgenic Potato Plants. Plant Physiology, 2004, 135, 1256-1268.	4.8	157
7	Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp Journal of Experimental Botany, 2006, 57, 911-921.	4.8	141
8	Autophagy as initiator or executioner of cell death. Trends in Plant Science, 2014, 19, 692-697.	8.8	137
9	Turnip Mosaic Virus Counteracts Selective Autophagy of the Viral Silencing Suppressor HCpro. Plant Physiology, 2018, 176, 649-662.	4.8	136
10	HSP70 and Its Cochaperone CPIP Promote Potyvirus Infection in <i>Nicotiana benthamiana</i> by Regulating Viral Coat Protein Functions. Plant Cell, 2010, 22, 523-535.	6.6	125
11	Capsid Protein-Mediated Recruitment of Host DnaJ-Like Proteins Is Required for <i>Potato Virus Y</i> Infection in Tobacco Plants. Journal of Virology, 2007, 81, 11870-11880.	3.4	123
12	Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. Journal of Experimental Botany, 2018, 69, 1415-1432.	4.8	120
13	Bacteria Exploit Autophagy for Proteasome Degradation and Enhanced Virulence in Plants. Plant Cell, 2018, 30, 668-685.	6.6	106
14	Catalase and <i>NO CATALASE ACTIVITY1</i> Promote Autophagy-Dependent Cell Death in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2013, 25, 4616-4626.	6.6	101
15	Inducible cell death in plant immunity. Seminars in Cancer Biology, 2007, 17, 166-187.	9.6	98
16	Autophagy-related approaches for improving nutrient use efficiency and crop yield protection. Journal of Experimental Botany, 2018, 69, 1335-1353.	4.8	97
17	Vitamin E biosynthesis: biochemistry meets cell biology. Trends in Plant Science, 2003, 8, 6-8.	8.8	96
18	Temporal and spatial control of gene silencing in transgenic plants by inducible expression of double-stranded RNA. Plant Journal, 2003, 36, 731-740.	5.7	94

DANIEL HOFIUS

#	Article	IF	CITATIONS
19	Autophagy as a mediator of life and death in plants. Current Opinion in Plant Biology, 2017, 40, 122-130.	7.1	91
20	Autophagy as an emerging arena for plant–pathogen interactions. Current Opinion in Plant Biology, 2017, 38, 117-123.	7.1	88
21	Evidence for expression level-dependent modulation of carbohydrate status and viral resistance by the potato leafroll virus movement protein in transgenic tobacco plants. Plant Journal, 2001, 28, 529-543.	5.7	77
22	Intracellular Trafficking of <i>Potato Leafroll Virus</i> Movement Protein in Transgenic <i>Arabidopsis</i> . Traffic, 2007, 8, 1205-1214.	2.7	75
23	Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in <i>Arabidopsis</i> . Autophagy, 2014, 10, 1579-1587.	9.1	75
24	Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. Journal of Experimental Botany, 2014, 65, 1297-1312.	4.8	75
25	Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase in transgenic tobacco plants. Journal of Experimental Botany, 2007, 58, 2053-2067.	4.8	70
26	Arabidopsis Accelerated Cell Death 11, ACD11, Is a Ceramide-1-Phosphate Transfer Protein and Intermediary Regulator of Phytoceramide Levels. Cell Reports, 2014, 6, 388-399.	6.4	69
27	Retromer Contributes to Immunity-Associated Cell Death in Arabidopsis. Plant Cell, 2015, 27, 463-479.	6.6	67
28	Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nature Plants, 2015, 1, 15127.	9.3	62
29	Tocopherol deficiency in transgenic tobacco (<i>Nicotiana tabacum</i> L.) plants leads to accelerated senescence. Plant, Cell and Environment, 2009, 32, 144-157.	5.7	57
30	Autophagy–virus interplay in plants: from antiviral recognition to proviral manipulation. Molecular Plant Pathology, 2019, 20, 1211-1216.	4.2	49
31	Identification of proteins interacting with Arabidopsis ACD11. Journal of Plant Physiology, 2009, 166, 661-666.	3.5	38
32	The RING-Type E3 Ligase XBAT35.2 Is Involved in Cell Death Induction and Pathogen Response. Plant Physiology, 2017, 175, 1469-1483.	4.8	37
33	A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO Journal, 2022, 41, .	7.8	36
34	Human GLTP and mutant forms of ACD11 suppress cell death in the <i>Arabidopsis acd11</i> mutant. FEBS Journal, 2008, 275, 4378-4388.	4.7	30
35	The Silver Lining of a Viral Agent: Increasing Seed Yield and Harvest Index in Arabidopsis by Ectopic Expression of the Potato Leaf Roll Virus Movement Protein. Plant Physiology, 2007, 145, 905-918.	4.8	29

9.1 26

DANIEL HOFIUS

#	Article	IF	CITATIONS
37	Lazarus1, a DUF300 Protein, Contributes to Programmed Cell Death Associated with Arabidopsis acd11 and the Hypersensitive Response. PLoS ONE, 2010, 5, e12586.	2.5	25
38	Arabidopsis RINGâ€ŧype E3 ubiquitin ligase XBAT35.2 promotes proteasomeâ€dependent degradation of ACD11 to attenuate abiotic stress tolerance. Plant Journal, 2020, 104, 1712-1723.	5.7	23
39	NBR1-mediated antiviral xenophagy in plant immunity. Autophagy, 2017, 13, 2000-2001.	9.1	21
40	Vacuole Integrity Maintained by DUF300 Proteins Is Required for Brassinosteroid Signaling Regulation. Molecular Plant, 2018, 11, 553-567.	8.3	18
41	Salicylic acid and the viral virulence factor 2b regulate the divergent roles of autophagy during cucumber mosaic virus infection. Autophagy, 2022, 18, 1450-1462.	9.1	18
42	Anti- and pro-microbial roles of autophagy in plant-bacteria interactions. Autophagy, 2018, 14, 1465-1466.	9.1	15
43	Polycomb Repressive Complex 2 and KRYPTONITE regulate pathogen-induced programmed cell death in Arabidopsis. Plant Physiology, 2021, 185, 2003-2021.	4.8	15
44	The second face of a known player: Arabidopsis silencing suppressor AtXRN4 acts organâ€specifically. New Phytologist, 2011, 189, 484-493.	7.3	13
45	Self-consuming innate immunity in Arabidopsis. Autophagy, 2009, 5, 1206-1207.	9.1	6
46	Salicylic acid interferes with GFP fluorescence in vivo. Journal of Experimental Botany, 2017, 68, 1689-1696.	4.8	4