
Anatoly Druzhinin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4719593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-temperature semiconductor mechanical sensors. Sensors and Actuators A: Physical, 2000, 85, 153-157.	4.1	36
2	Strain-induced effects in p-type Si whiskers at low temperatures. Materials Science in Semiconductor Processing, 2015, 40, 766-771.	4.0	27
3	Medical pressure sensors on the basis of silicon microcrystals and SOI layers. Sensors and Actuators B: Chemical, 1999, 58, 415-419.	7.8	25
4	Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures. Materials Science in Semiconductor Processing, 2011, 14, 18-22.	4.0	24
5	Silicon Nanostructures Produced by Modified MacEtch Method for Antireflective Si Surface. Nanoscale Research Letters, 2017, 12, 106.	5.7	23
6	Low temperature magnetoresistance of InSb whiskers. Materials Science in Semiconductor Processing, 2015, 40, 550-555.	4.0	21
7	Variableâ€range hopping conductance in Si whiskers. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 504-508.	1.8	20
8	Magneto-transport properties of poly-silicon in SOI structures at low temperatures. Materials Science in Semiconductor Processing, 2015, 31, 19-26.	4.0	20
9	Properties of Low-Dimentional Polysilicon in SOI Structures for Low Temperature Sensors. Advanced Materials Research, 2013, 854, 49-55.	0.3	19
10	Magnetic susceptibility and magnetoresistance of neutron-irradiated doped SI whiskers. Journal of Magnetism and Magnetic Materials, 2015, 393, 310-315.	2.3	19
11	Negative magnetoresistance in indium antimonide whiskers doped with tin. Low Temperature Physics, 2016, 42, 453-457.	0.6	19
12	Micro- and Nanotextured Silicon for Antireflective Coatings of Solar Cells. Journal of Nano Research, 2016, 39, 89-95.	0.8	19
13	Magnetic Properties of Doped Si <b,ni> Whiskers for Spintronics. Journal of Nano Research, 2016, 39, 43-54.</b,ni>	0.8	18
14	Properties of Doped GaSb Whiskers at Low Temperatures. Nanoscale Research Letters, 2017, 12, 156.	5.7	18
15	High Sensitive Active MOS Photo Detector on the Local 3D SOI-Structure. Advanced Materials Research, 2013, 854, 45-47.	0.3	17
16	Impedance spectroscopy of polysilicon in SOI structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 156-159.	0.8	17
17	Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures. Materials Research Bulletin, 2015, 72, 324-330.	5.2	17
18	Low-temperature magnetoresistance of GaSb whiskers. Low Temperature Physics, 2017, 43, 692-698.	0.6	17

ANATOLY DRUZHININ

#	Article	IF	CITATIONS
19	Laser-recrystallized polysilicon layers in sensors. Sensors and Actuators A: Physical, 1992, 30, 143-147.	4.1	16
20	Investigation of Si-Ge whisker growth by CVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 333-336.	0.8	16
21	Polysilicon on Insulator Structures for Sensor Application at Electron Irradiation & Magnetic Fields. Advanced Materials Research, 2011, 276, 109-116.	0.3	16
22	Nanoscale Conductive Channels in Silicon Whiskers with Nickel Impurity. Nanoscale Research Letters, 2017, 12, 78.	5.7	16
23	Magnetic Susceptibility of Doped Si Nanowhiskers. Journal of Nanoscience and Nanotechnology, 2012, 12, 8690-8693.	0.9	15
24	Study of piezoresistance in GexSi1â^'x whiskers for sensor application. Materials Science in Semiconductor Processing, 2005, 8, 193-196.	4.0	12
25	Berry phase in strained InSb whiskers. Low Temperature Physics, 2018, 44, 1189-1194.	0.6	12
26	Spin-related phenomena in nanoscale Si <â€ [−] B, Ni> whiskers. Journal of Magnetism and Magnetic Materials, 2019, 473, 331-334.	2.3	11
27	Fabrication and Characterization of High-Performance Anti-reflecting Nanotextured Si Surfaces for Solar Cells. Springer Proceedings in Physics, 2018, , 275-283.	0.2	10
28	GaSb whiskers in sensor electronics. Functional Materials, 2016, 23, 206-211.	0.1	9
29	Thermoelectric properties of Si–Ge whiskers. Materials Science in Semiconductor Processing, 2006, 9, 853-857.	4.0	8
30	Superconductivity and Kondo Effect of PdxBi2Se3 Whiskers at Low Temperatures. Journal of Nano- and Electronic Physics, 2017, 9, 05013-1-05013-5.	0.5	8
31	Si and Si-Ge wires for thermoelectrics. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 867-870.	0.8	7
32	Impedance of boron and nickel doped silicon whiskers. Molecular Crystals and Liquid Crystals, 2018, 661, 12-19.	0.9	7
33	Superconductivity and weak localization of PdxBi2Se3 whiskers at low temperatures. Applied Nanoscience (Switzerland), 2018, 8, 877-883.	3.1	6
34	Nanoscale polysilicon in sensors of physical values at cryogenic temperatures. Journal of Materials Science: Materials in Electronics, 2018, 29, 8364-8370.	2.2	6
35	Formation of Ordered Si Nanowires Arrays on Si Substrate. Advanced Materials Research, 0, 854, 83-88.	0.3	5
36	Development of anti-reflecting surfaces based on Si micropyramids and wet-chemically etched Si nanowire arrays. Functional Materials, 2018, 25, 675-680.	0.1	5

ANATOLY DRUZHININ

#	Article	IF	CITATIONS
37	3D SOI Elements for System-on-Chip Applications. Advanced Materials Research, 2011, 276, 137-144.	0.3	4
38	Spin-orbit interaction in InSb core-shell wires. Molecular Crystals and Liquid Crystals, 2018, 674, 1-10.	0.9	4
39	Role of Ag-catalyst morphology and molarity of AgNO ₃ on the size control of Si nanowires produced by metal-assisted chemical etching. Molecular Crystals and Liquid Crystals, 2018, 674, 69-75.	0.9	4
40	Rashba Interaction in Polysilicon Layers SemOI-Structures. Journal of Electronic Materials, 2019, 48, 4934-4938.	2.2	4
41	Superconductivity and weak anti-localization in GaSb whiskers under strain. Low Temperature Physics, 2019, 45, 1065-1071.	0.6	4
42	Physical aspects of multifunctional sensors based on piezothermomagnetic effects in semiconductors. Sensors and Actuators A: Physical, 1998, 68, 229-233.	4.1	3
43	Investigation of free and strained germanium whiskers at cryogenic temperatures. , 2001, 4413, 143.		3
44	Modification of silicon surface for solar cells. , 2015, , .		3
45	The spin-resolved electronic structure of doped crystals si < Ni > and Si < B, Ni>: theor experimental aspects. Molecular Crystals and Liquid Crystals, 2018, 674, 120-129.	etical and	3
46	Thermoelectric Properties of Oblique SiGe Whiskers. Journal of Nano- and Electronic Physics, 2016, 8, 02030-1-02030-5.	0.5	3
47	Quantization in magnetoresistance of strained InSb whiskers. Low Temperature Physics, 2019, 45, 513-517.	0.6	2
48	Strain-Induced Berry Phase in GaSb Microcrystals. Journal of Low Temperature Physics, 2019, 196, 375-385.	1.4	2
49	Spin-orbit coupling in strained Ge whiskers. Low Temperature Physics, 2019, 45, 1182-1186.	0.6	2
50	Peculiarities of charge carriers transport in submicron Si-Ge whiskers. Functional Materials, 2015, 22, 27-33.	0.1	2
51	Weak Antilocalization Model of N-Type Bi2Se3 Whiskers. , 2018, , .		1
52	Quantum magnetoresistance in Si <b, ni=""> whiskers. Low Temperature Physics, 2021, 47, 488-492.</b,>	0.6	1
53	FEM model of thermoelectric sensor sensitive element based on silicon whiskers. , 0, , .		0
54	Composition and Electrical Properties of Hg x Cd1 – x S Whiskers. Inorganic Materials, 2002, 38, 336-338.	0.8	0

4

#	Article	IF	CITATIONS
55	Alternating Current Converter. , 2006, , .		0
56	Properties of SiGe microcrystals in strong magnetic fields for thermoelectric sensors. , 2016, , .		0
57	The frequency dependence features of Si whiskers conductance in low-temperature range. , 2016, , .		0
58	Silicon nanostructures formed by metal-assisted chemical etching for electron field emission cathodes. , 2016, , .		0
59	Antireflective properties of silicon modified by electrochemical and chemical methods. , 2016, , .		0
60	Electrical and layouts simulation of analytical microsystem-on-chip elements for high frequence and low temperature applications. , 2016, , .		0
61	Magnetoresistance oscillations in germanium and indium antimonide whiskers. , 2016, , .		0
62	Components of micro- and nanoelectronics based on silicon structures for cryogenic temperatures. , 2016, , .		0
63	Thermoelectric properties of SiGe whiskers with various morphology. , 2017, , .		0
64	Deformation characteristics of SOI structures at cryogenic temperatures. , 2017, , .		0
65	Peculiarities of magnetoresistance in Si whiskers dopped Ni at cryogenic temperatures. , 2017, , .		0
66	The effect of hydrostatic pressure on the indium antimonide thin films. , 2017, , .		0
67	Magnetoresistance oscillations in InSb and GaSb whiskers at low temperatures. , 2017, , .		0
68	Magnetoresistance of doped Te:GaSb whiskers. , 2017, , .		0
69	Spin-Dependent Transport of Charge Carriers in Silicon Microcrystals Doped with Boron and Diluted with Nickel. , 2018, , .		0
70	Studies piezoresistive properties of n-type conductivity indium antimonide thin layers. , 2018, , .		0
71	3D MOS-transistor elements in smart-sensors based on SOI-structures. , 2018, , .		0

72 MSoC device based on SOI-structures., 2018,,.

#	Article	IF	CITATIONS
73	Magneto-transport properties of Bi2Se3 whiskers: superconductivity and weak localization. Molecular Crystals and Liquid Crystals, 2020, 701, 82-90.	0.9	0
74	Strain-induced splitting in valence band of Si–Ge whiskers. Applied Nanoscience (Switzerland), 0, , 1.	3.1	0
75	Critical fields and features of electromagnetic transport of Bi2Se3 whiskers at low temperatures. Low Temperature Physics, 2021, 47, 96-100.	0.6	0