Zhongze Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4719449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of Air-Gap Field Modulation and Magnetic Gearing Effects in Switched Flux Permanent Magnet Machines. IEEE Transactions on Magnetics, 2015, 51, 1-12.	2.1	214
2	Partitioned Stator Flux Reversal Machine With Consequent-Pole PM Stator. IEEE Transactions on Energy Conversion, 2015, 30, 1472-1482.	5.2	85
3	Analytical Approach for Cogging Torque Reduction in Flux-Switching Permanent Magnet Machines Based on Magnetomotive Force-Permeance Model. IEEE Transactions on Industrial Electronics, 2018, 65, 1965-1979.	7.9	76
4	A Wound Field Switched Flux Machine With Field and Armature Windings Separately Wound in Double Stators. IEEE Transactions on Energy Conversion, 2015, 30, 772-783.	5.2	69
5	Optimum Injected Harmonics Into Magnet Shape in Multiphase Surface-Mounted PM Machine for Maximum Output Torque. IEEE Transactions on Industrial Electronics, 2017, 64, 4434-4443.	7.9	56
6	Novel Doubly Salient Permanent Magnet Machines With Partitioned Stator and Iron Pieces Rotor. IEEE Transactions on Magnetics, 2015, 51, 1-12.	2.1	52
7	Analysis of the Operation Principle for Rotor-Permanent-Magnet Flux-Switching Machines. IEEE Transactions on Industrial Electronics, 2018, 65, 1062-1073.	7.9	51
8	Analysis of Magnetic Gearing Effect in Partitioned Stator Switched Flux PM Machines. IEEE Transactions on Energy Conversion, 2016, 31, 1239-1249.	5.2	48
9	Comparative Study of Partitioned Stator Machines With Different PM Excitation Stators. IEEE Transactions on Industry Applications, 2016, 52, 199-208.	4.9	43
10	A Novel Flux-Switching Permanent Magnet Machine With Overlapping Windings. IEEE Transactions on Energy Conversion, 2017, 32, 172-183.	5.2	41
11	Torque Improvement in Five-Phase Unequal Tooth SPM Machine by Injecting Third Harmonic Current. IEEE Transactions on Vehicular Technology, 2018, 67, 206-215.	6.3	40
12	Comparative Analysis of End Effect in Partitioned Stator Flux Reversal Machines Having Surface-Mounted and Consequent Pole Permanent Magnets. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	39
13	A Partitioned Stator Variable Flux Reluctance Machine. IEEE Transactions on Energy Conversion, 2016, 31, 78-92.	5.2	38
14	Influence of Coil Pitch and Stator-Slot/Rotor-Pole Combination on Back EMF Harmonics in Flux-Reversal Permanent Magnet Machines. IEEE Transactions on Energy Conversion, 2018, 33, 1330-1341.	5.2	38
15	Reduction of Open-Circuit DC-Winding-Induced Voltage in Wound Field Switched Flux Machines by Skewing. IEEE Transactions on Industrial Electronics, 2019, 66, 1715-1726.	7.9	37
16	Modular Spoke-Type Permanent-Magnet Machine for In-Wheel Traction Applications. IEEE Transactions on Industrial Electronics, 2018, 65, 7648-7659.	7.9	34
17	Mitigating the Torque Ripple in Electric Traction Using Proportional Integral Resonant Controller. IEEE Transactions on Vehicular Technology, 2020, 69, 10820-10831.	6.3	30
18	Comprehensive Comparison of Rotor Permanent Magnet and Stator Permanent Magnet Flux-Switching Machines. IEEE Transactions on Industrial Electronics, 2019, 66, 5862-5871.	7.9	29

ZHONGZE WU

#	Article	IF	CITATIONS
19	Influence of Rotor-Pole Number on Electromagnetic Performance in 12-Phase Redundant Switched Flux Permanent Magnet Machines for Wind Power Generation. IEEE Transactions on Industry Applications, 2017, 53, 3305-3316.	4.9	28
20	Analysis and Suppression of Induced Voltage Pulsation in DC Winding of Five-Phase Wound-Field Switched Flux Machines. IEEE Transactions on Energy Conversion, 2019, 34, 1890-1905.	5.2	28
21	Flux-Weakening Control Performance of Partitioned Stator-Switched Flux PM Machines. IEEE Transactions on Industry Applications, 2016, 52, 2350-2359.	4.9	27
22	Partitioned Stator Machines With NdFeB and Ferrite Magnets. IEEE Transactions on Industry Applications, 2017, 53, 1870-1882.	4.9	27
23	Analysis and Reduction of On-Load DC Winding Induced Voltage in Wound Field Switched Flux Machines. IEEE Transactions on Industrial Electronics, 2020, 67, 2655-2666.	7.9	26
24	Comparative Analysis of Partitioned Stator Flux Reversal PM Machines Having Fractional-Slot Nonoverlapping and Integer-Slot Overlapping Windings. IEEE Transactions on Energy Conversion, 2016, 31, 776-788.	5.2	25
25	Comparative Analysis of Partitioned Stator Flux Reversal PM Machine and Magnetically Geared Machine Operating in Stator-PM and Rotor-PM Modes. IEEE Transactions on Energy Conversion, 2017, 32, 903-917.	5.2	25
26	Electromagnetic Performance Comparison Between 12-Phase Switched Flux and Surface-Mounted PM Machines for Direct-Drive Wind Power Generation. IEEE Transactions on Industry Applications, 2020, 56, 1408-1422.	4.9	24
27	Design Considerations of Novel Modular-Spoke-Type Permanent Magnet Machines. IEEE Transactions on Industry Applications, 2018, 54, 4236-4245.	4.9	23
28	Comparison of Partitioned Stator Switched Flux Permanent Magnet Machines Having Single- or Double-Layer Windings. IEEE Transactions on Magnetics, 2016, 52, 1-10.	2.1	22
29	A Lumped Parameter Thermal Model for Single-Sided AFPM Machines With Experimental Validation. IEEE Transactions on Transportation Electrification, 2020, 6, 1065-1083.	7.8	21
30	Cogging torque suppression in fluxâ€reversal permanent magnet machines. IET Electric Power Applications, 2018, 12, 135-143.	1.8	20
31	Cogging torque minimisation in FSPM machines by rightâ€angleâ€based tooth chamfering technique. IET Electric Power Applications, 2018, 12, 627-634.	1.8	20
32	Analysis of Stator Slots and Rotor Pole Pairs Combinations of Rotor-Permanent Magnet Flux-Switching Machines. IEEE Transactions on Industrial Electronics, 2020, 67, 906-918.	7.9	20
33	A Comparative Study on Nine- and Twelve-Phase Flux-Switching Permanent-Magnet Wind Power Generators. IEEE Transactions on Industry Applications, 2019, 55, 3607-3616.	4.9	19
34	Influence of DC Winding Configuration on Its Induced Voltage in Wound Field Machines. IEEE Transactions on Energy Conversion, 2018, 33, 1825-1836.	5.2	17
35	Investigation on Phase Shift Between Multiple Multiphase Windings in Flux-Switching Permanent Magnet Machines. IEEE Transactions on Industry Applications, 2017, 53, 1958-1970.	4.9	15
36	Reduction of Open-Circuit DC Winding Induced Voltage and Torque Pulsation in the Wound Field Switched Flux Machine by Stator Axial Pairing of Tooth Tips. IEEE Transactions on Industry Applications, 2022, 58, 1976-1990.	4.9	9

ZHONGZE WU

#	ARTICLE	IF	CITATIONS
37	Reduction of On-Load DC Winding-Induced Voltage in Partitioned Stator Wound Field Switched Flux Machines by Dual Three-Phase Armature Winding. IEEE Transactions on Industrial Electronics, 2022, 69, 5409-5420.	7.9	8
38	Analysis of coupling between two subâ€machines in coâ€axis dualâ€mechanicalâ€port fluxâ€switching PM machine for fuelâ€based extended range electric vehicles. IET Electric Power Applications, 2019, 13, 48-56.	1.8	7
39	Analysis of DC Winding Induced Voltage in Wound-Field Flux-Switching Machine With Air-Gap Field Modulation Principle. IEEE Transactions on Industrial Electronics, 2022, 69, 2300-2311.	7.9	7
40	A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles. Journal of Applied Physics, 2012, 111, 07E736.	2.5	5
41	Comparison of partitioned stator switched flux permanent magnet machines having single- and double-layer windings. , 2015, , .		5
42	Electromagnetic performance of switched flux PM machines with two separate stators. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2016, 35, 376-395.	0.9	5
43	Performance comparison of partitioned stator machines with NdFeB and ferrite magnets. , 2015, , .		3
44	Influence of rotor iron bridge position on DC-winding-induced voltage in wound field switched flux machine having partitioned stators. Chinese Journal of Electrical Engineering, 2021, 7, 20-28.	3.4	3
45	Enhancement of torque density in wound field switched flux machines with partitioned stators using assisted ferrites. Chinese Journal of Electrical Engineering, 2021, 7, 42-51.	3.4	3
46	Reduction of Open-Circuit DC Winding Induced Voltage and Torque Pulsation in the Wound Field Switched Flux Machine by Stator Axial Pairing of Tooth-Tips. , 2020, , .		3
47	Flux-weakening control performance of partitioned stator switched flux PM machines. , 2015, , .		1
48	Comparative analysis of parasitic losses in partitioned stator switched flux PM machines with double- and single-layer windings. , 2015, , .		1
49	Influence of rotor-pole number on electromagnetic performance in twelve-phase redundant SFPM machines for wind power generation. , 2016, , .		1
50	Influence of stator/rotorâ€pole combination on electromagnetic performance in all/alternate poles wound partitioned stator doubly salient permanent magnet machines. Journal of Engineering, 2017, 2017, 237-245.	1.1	1
51	Active voltage regulation of partitioned stator switched flux permanent magnet generator supplying isolated passive load. , 2016, , .		0
52	Electromagnetic performance of partitioned stator switched flux permanent magnet synchronous generator. , 2017, , .		0
53	A Partitioned Stator Variable Flux Reluctance Machine. , 2018, , .		0