Laura Lee Colgin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4719382/publications.pdf

Version: 2024-02-01

394421 552781 4,100 30 19 26 citations g-index h-index papers 33 33 33 3723 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hippocampal oscillatory dynamics in freely behaving rats during exploration of social and non-social stimuli. Cognitive Neurodynamics, 2023, 17, 411-429.	4.0	2
2	Hippocampal place cell sequences differ during correct and error trials in a spatial memory task. Nature Communications, 2021, 12, 3373.	12.8	23
3	Five Decades of Hippocampal Place Cells and EEG Rhythms in Behaving Rats. Journal of Neuroscience, 2020, 40, 54-60.	3.6	18
4	CA3 place cells that represent a novel waking experience are preferentially reactivated during sharp waveâ€ripples in subsequent sleep. Hippocampus, 2019, 29, 921-938.	1.9	19
5	The High Energy Cost of Theta–Gamma Activity during REM Sleep. Trends in Neurosciences, 2019, 42, 239-241.	8.6	2
6	Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors. Nature Neuroscience, 2019, 22, 609-617.	14.8	67
7	Cover Image, Volume 29, Issue 10. Hippocampus, 2019, 29, C1.	1.9	O
8	Experience-dependent trends in CA1 theta and slow gamma rhythms in freely behaving mice. Journal of Neurophysiology, 2018, 119, 476-489.	1.8	13
9	Spike Time Synchrony in the Absence of Continuous Oscillations. Neuron, 2018, 100, 527-529.	8.1	3
10	Gamma oscillations in cognitive disorders. Current Opinion in Neurobiology, 2018, 52, 182-187.	4.2	164
11	A neuronal mechanism for recall of bad events. Nature Neuroscience, 2017, 20, 501-503.	14.8	O
12	Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer's disease. Hippocampus, 2017, 27, 378-392.	1.9	85
13	Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells. Frontiers in Systems Neuroscience, 2017, 11, 57.	2.5	21
14	Fast Gamma Rhythms in the Hippocampus Promote Encoding of Novel Object–Place Pairings. ENeuro, 2016, 3, ENEURO.0001-16.2016.	1.9	76
15	Slow gamma rhythms in CA3 are entrained by slow gamma activity in the dentate gyrus. Journal of Neurophysiology, 2016, 116, 2594-2603.	1.8	24
16	Rhythms of the hippocampal network. Nature Reviews Neuroscience, 2016, 17, 239-249.	10.2	495
17	Spatial Sequence Coding Differs during Slow and Fast Gamma Rhythms in the Hippocampus. Neuron, 2016, 89, 398-408.	8.1	130
18	The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus, 2015, 25, 924-938.	1.9	79

#	Article	IF	CITATION
19	Beta and Gamma Rhythms Go with the Flow. Neuron, 2015, 85, 236-237.	8.1	29
20	Do slow and fast gamma rhythms correspond to distinct functional states in the hippocampal network?. Brain Research, 2015, 1621, 309-315.	2.2	82
21	Theta–gamma coupling in the entorhinal–hippocampal system. Current Opinion in Neurobiology, 2015, 31, 45-50.	4.2	166
22	Slow and Fast Gamma Rhythms Coordinate Different Spatial Coding Modes in Hippocampal Place Cells. Neuron, 2014, 82, 670-681.	8.1	182
23	Mechanisms and Functions of Theta Rhythms. Annual Review of Neuroscience, 2013, 36, 295-312.	10.7	392
24	Gamma Oscillations in the Hippocampus. Physiology, 2010, 25, 319-329.	3.1	260
25	Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 2009, 462, 353-357.	27.8	1,206
26	Hippocampal theta rhythms follow the beat of their own drum. Nature Neuroscience, 2009, 12, 1483-1484.	14.8	22
27	Understanding memory through hippocampal remapping. Trends in Neurosciences, 2008, 31, 469-477.	8.6	361
28	Blockade of NMDA receptors enhances spontaneous sharp waves in rat hippocampal slices. Neuroscience Letters, 2005, 385, 46-51.	2.1	29
29	Long-term potentiation is impaired in rat hippocampal slices that produce spontaneous sharp waves. Journal of Physiology, 2004, 558, 953-961.	2.9	104
30	Septal Modulation of Excitatory Transmission in Hippocampus. Journal of Neurophysiology, 2003, 90, 2358-2366.	1.8	32