
## Timo Vesala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4718834/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437, 529-533.                                                                                                        | 27.8 | 3,245     |
| 2  | FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide,<br>Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 2001, 82,<br>2415-2434. | 3.3  | 3,018     |
| 3  | On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11, 1424-1439.                                                      | 9.5  | 2,778     |
| 4  | Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest<br>Meteorology, 2001, 107, 43-69.                                                                                   | 4.8  | 1,579     |
| 5  | Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology.<br>Advances in Ecological Research, 1999, , 113-175.                                                                         | 2.7  | 1,540     |
| 6  | Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404, 861-865.                                                                                                                   | 27.8 | 1,438     |
| 7  | Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 2006, 3, 571-583.                                            | 3.3  | 1,206     |
| 8  | Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation.<br>Agricultural and Forest Meteorology, 2002, 113, 97-120.                                                                | 4.8  | 1,133     |
| 9  | Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 2008, 451, 49-52.                                                                                                                | 27.8 | 930       |
| 10 | CO <sub>2</sub> balance of boreal, temperate, and tropical forests derived from a global database.<br>Global Change Biology, 2007, 13, 2509-2537.                                                                        | 9.5  | 863       |
| 11 | Productivity overshadows temperature in determining soil and ecosystem respiration across<br>European forests. Clobal Change Biology, 2001, 7, 269-278.                                                                  | 9.5  | 843       |
| 12 | The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.                                                                                                     | 5.3  | 646       |
| 13 | Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 2009, 43, 5193-5267.                                                                                                        | 4.1  | 609       |
| 14 | Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 2007, 143, 189-207.                               | 4.8  | 547       |
| 15 | Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research, 2002, 107, ACL 2-1-ACL 2-23.                                                                                    | 3.3  | 518       |
| 16 | Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 2007, 143, 123-145.                                           | 4.8  | 509       |
| 17 | Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 2001,<br>107, 71-77.                                                                                                    | 4.8  | 493       |
| 18 | Reduction of ecosystem productivity and respiration during the European summer 2003 climate<br>anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 2007, 13,<br>634-651.          | 9.5  | 486       |

| #  | Article                                                                                                                                                                                              | IF       | CITATIONS      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|
| 19 | Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience, 2010, 3, 525-532.                                                                                                     | 12.9     | 486            |
| 20 | Temporal and amongâ€site variability of inherent water use efficiency at the ecosystem level. Global<br>Biogeochemical Cycles, 2009, 23, .                                                           | 4.9      | 422            |
| 21 | Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest<br>Meteorology, 2004, 123, 159-176.                                                                | 4.8      | 420            |
| 22 | A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry and Physics, 2004, 4, 557-562.                                                                                | 4.9      | 337            |
| 23 | Evaluation of forest snow processes models (SnowMIP2). Journal of Geophysical Research, 2009, 114, .                                                                                                 | 3.3      | 290            |
| 24 | Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global<br>Change Biology, 2003, 9, 1410-1426.                                                             | 9.5      | 273            |
| 25 | Joint control of terrestrial gross primary productivity by plant phenology and physiology.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2788-2793. | 7.1      | 265            |
| 26 | Objective threshold determination for nighttime eddy flux filtering. Agricultural and Forest<br>Meteorology, 2005, 128, 179-197.                                                                     | 4.8      | 241            |
| 27 | Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique.<br>Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 449-457.                             | 1.6      | 224            |
| 28 | Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees - Structure and Function, 2006, 20, 67-78.                                                   | 1.9      | 206            |
| 29 | Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and) Tj ETQq1 1 0.784314                                                                                     | rgBT/Ove | erlock 10 Tf 5 |
| 30 | Challenges in quantifying biosphere–atmosphere exchange of nitrogen species. Environmental<br>Pollution, 2007, 150, 125-139.                                                                         | 7.5      | 203            |
| 31 | Flux and concentration footprint modelling: State of the art. Environmental Pollution, 2008, 152, 653-666.                                                                                           | 7.5      | 199            |
| 32 | Quality control of CarboEurope flux data – Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences, 2008, 5, 433-450.           | 3.3      | 192            |
| 33 | Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theoretical and Applied Climatology, 2005, 80, 121-141.                                  | 2.8      | 173            |
| 34 | The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4594-4599.                             | 7.1      | 171            |
| 35 | Inventories of N <sub>2</sub> O and NO emissions from European forest soils. Biogeosciences, 2005, 2, 353-375.                                                                                       | 3.3      | 170            |
| 36 | Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites.<br>Water Resources Research, 2002, 38, 30-1-30-11.                                                | 4.2      | 169            |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. Journal of Geophysical Research, 2011, 116, .                                                    | 3.3 | 168       |
| 38 | Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Boundary-Layer Meteorology, 1999, 91, 259-280.                                                          | 2.3 | 164       |
| 39 | Assimilate transport in phloem sets conditions for leaf gas exchange. Plant, Cell and Environment, 2013, 36, 655-669.                                                                                            | 5.7 | 161       |
| 40 | Effect of thinning on surface fluxes in a boreal forest. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.                                                                                                        | 4.9 | 157       |
| 41 | Footprint Analysis For Measurements Over A Heterogeneous Forest. Boundary-Layer Meteorology,<br>2000, 97, 137-166.                                                                                               | 2.3 | 151       |
| 42 | Estimating parameters in a land-surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Global Change Biology, 2007, 13, 652-670.                           | 9.5 | 144       |
| 43 | Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology<br>in autumn. Global Ecology and Biogeography, 2013, 22, 994-1006.                                        | 5.8 | 144       |
| 44 | Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on FLUXNET data. Agricultural and Forest Meteorology, 2007, 144, 14-31.                          | 4.8 | 138       |
| 45 | A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus,<br>Series B: Chemical and Physical Meteorology, 2022, 60, 42.                                                     | 1.6 | 138       |
| 46 | The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation. Journal of Geophysical Research, 1993, 98, 22949-22958.                                                                    | 3.3 | 137       |
| 47 | Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2 O fluxes at six forest sites in Europe. Global Change Biology, 2002, 8, 213-230.                           | 9.5 | 135       |
| 48 | New insights into the covariation of stomatal, mesophyll and hydraulic conductances from<br>optimization models incorporating nonstomatal limitations to photosynthesis. New Phytologist, 2018,<br>217, 571-585. | 7.3 | 135       |
| 49 | Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Global Change Biology, 2008, 14, 92-108.                         | 9.5 | 132       |
| 50 | Hydrocarbon fluxes above a Scots pine forest canopy: measurements and modeling. Atmospheric Chemistry and Physics, 2007, 7, 3361-3372.                                                                           | 4.9 | 131       |
| 51 | Sustainable urban metabolism as a link between bio-physical sciences and urban planning: The BRIDGE project. Landscape and Urban Planning, 2013, 112, 100-117.                                                   | 7.5 | 131       |
| 52 | Foliage surface ozone deposition: a role for surface moisture?. Biogeosciences, 2006, 3, 209-228.                                                                                                                | 3.3 | 128       |
| 53 | Vertical aerosol particle fluxes measured by eddy covariance technique using condensational particle counter. Journal of Aerosol Science, 1998, 29, 157-171.                                                     | 3.8 | 127       |
| 54 | Surface–atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus, Series B:<br>Chemical and Physical Meteorology, 2022, 60, 188.                                                          | 1.6 | 125       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Models for condensational growth and evaporation of binary aerosol particles. Journal of Aerosol<br>Science, 1997, 28, 565-598.                                                                                                      | 3.8  | 122       |
| 56 | Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model. Tree Physiology, 2001, 21, 889-897.                                                                                       | 3.1  | 122       |
| 57 | On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums. Agricultural and Forest Meteorology, 2012, 152, 212-222.                                                    | 4.8  | 121       |
| 58 | Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland. Remote Sensing of Environment, 2004, 93, 225-237.                                   | 11.0 | 118       |
| 59 | Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn. Agricultural and Forest Meteorology, 2011, 151, 682-691.                                                                      | 4.8  | 118       |
| 60 | Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiology, 2006, 26, 749-757.                                                                                                                                   | 3.1  | 117       |
| 61 | CO <sub>2</sub> exchange of a sedge fen in southern Finland—the impact of a drought<br>period. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 826.                                                                   | 1.6  | 117       |
| 62 | Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New<br>Phytologist, 2012, 194, 775-783.                                                                                                    | 7.3  | 111       |
| 63 | Exceptional carbon uptake in European forests during the warm spring of 2007: a data–model analysis.<br>Global Change Biology, 2009, 15, 1455-1474.                                                                                  | 9.5  | 110       |
| 64 | Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen<br>ecosystem. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 838.                                                       | 1.6  | 109       |
| 65 | Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecological Modelling,<br>2007, 208, 177-188.                                                                                                          | 2.5  | 109       |
| 66 | Relative Humidity Effect on the High-Frequency Attenuation of Water Vapor Flux Measured by a<br>Closed-Path Eddy Covariance System. Journal of Atmospheric and Oceanic Technology, 2009, 26,<br>1856-1866.                           | 1.3  | 108       |
| 67 | The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmospheric Chemistry and Physics, 2011, 11, 10599-10618.                                       | 4.9  | 108       |
| 68 | Time lags for xylem and stem diameter variations in a Scots pine tree. Plant, Cell and Environment, 2002, 25, 1071-1077.                                                                                                             | 5.7  | 106       |
| 69 | Mass and Thermal Accommodation during Gas-Liquid Condensation of Water. Physical Review Letters, 2004, 93, 075701.                                                                                                                   | 7.8  | 105       |
| 70 | Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. Journal of Geophysical Research, 2006, 111, .                                                   | 3.3  | 105       |
| 71 | Biosphere–atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core<br>flux measurement sites: Measurement strategy and first data sets. Agriculture, Ecosystems and<br>Environment, 2009, 133, 139-149. | 5.3  | 104       |
| 72 | Long-term direct CO <sub>2</sub> flux measurements over a boreal lake: Five years of eddy covariance<br>data. Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                       | 4.0  | 104       |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Turbulence Statistics Inside and Over Forest: Influence on Footprint Prediction. Boundary-Layer<br>Meteorology, 2003, 109, 163-189.                                                                                | 2.3  | 103       |
| 74 | Reviews and syntheses: Carbonyl sulfide as aÂmulti-scale tracer for carbon and water cycles.<br>Biogeosciences, 2018, 15, 3625-3657.                                                                               | 3.3  | 98        |
| 75 | Comparison between static chamber and tunable diode laser-based eddy covariance techniques for<br>measuring nitrous oxide fluxes from a cotton field. Agricultural and Forest Meteorology, 2013,<br>171-172, 9-19. | 4.8  | 97        |
| 76 | Interannual variability and timing of growing-season CO2exchange in a boreal forest. Journal of<br>Geophysical Research, 2003, 108, n/a-n/a.                                                                       | 3.3  | 95        |
| 77 | Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Change Biology, 2009, 15, 2905-2920.                           | 9.5  | 94        |
| 78 | Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus,<br>Series B: Chemical and Physical Meteorology, 2007, 59, 458-469.                                              | 1.6  | 92        |
| 79 | Nitrous Oxide Emissions from a Municipal Landfill. Environmental Science & Technology, 2005, 39, 7790-7793.                                                                                                        | 10.0 | 89        |
| 80 | Do small spores disperse further than large spores?. Ecology, 2014, 95, 1612-1621.                                                                                                                                 | 3.2  | 87        |
| 81 | Four-year (2006–2009) eddy covariance measurements of CO <sub>2</sub><br>flux over an urban area in Beijing. Atmospheric Chemistry and Physics, 2012, 12, 7881-7892.                                               | 4.9  | 85        |
| 82 | Early snowmelt significantly enhances boreal springtime carbon uptake. Proceedings of the National<br>Academy of Sciences of the United States of America, 2017, 114, 11081-11086.                                 | 7.1  | 84        |
| 83 | Micrometeorological Measurements of Methane and Carbon Dioxide Fluxes at a Municipal Landfill.<br>Environmental Science & Technology, 2007, 41, 2717-2722.                                                         | 10.0 | 82        |
| 84 | Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010.<br>Atmospheric Chemistry and Physics, 2012, 12, 8475-8489.                                                      | 4.9  | 82        |
| 85 | Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide<br>exchange capacity under nonâ€waterâ€stressed conditions. Global Change Biology, 2007, 13, 734-760.                 | 9.5  | 81        |
| 86 | Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method. Biogeosciences, 2018, 15, 429-445.                                                 | 3.3  | 81        |
| 87 | Footprints and Fetches for Fluxes over Forest Canopies with Varying Structure and Density.<br>Boundary-Layer Meteorology, 2003, 106, 437-459.                                                                      | 2.3  | 80        |
| 88 | LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific<br>Model Development, 2016, 9, 1977-2006.                                                                   | 3.6  | 80        |
| 89 | FLUXNET-CH <sub>4</sub> : a global, multi-ecosystem dataset and analysis of<br>methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.                                       | 9.9  | 79        |
| 90 | Commentary on cloud modelling and the mass accommodation coefficient of water. Atmospheric<br>Chemistry and Physics, 2005, 5, 461-464.                                                                             | 4.9  | 78        |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Testing the applicability of neural networks as a gap-filling method using<br>CH <sub>4</sub> flux data from high latitude wetlands. Biogeosciences,<br>2013, 10, 8185-8200.                                                           | 3.3 | 78        |
| 92  | Temporal Variation of Ecosystem Scale Methane Emission From a Boreal Fen in Relation to<br>Temperature, Water Table Position, and Carbon Dioxide Fluxes. Global Biogeochemical Cycles, 2018, 32,<br>1087-1106.                         | 4.9 | 78        |
| 93  | Effects of water clarity on lake stratification and lakeâ€atmosphere heat exchange. Journal of<br>Geophysical Research D: Atmospheres, 2015, 120, 7412-7428.                                                                           | 3.3 | 77        |
| 94  | Theoretical consideration on sticking probabilities. Journal of Aerosol Science, 1996, 27, 869-882.                                                                                                                                    | 3.8 | 76        |
| 95  | Intra-City Variation in Urban Morphology and Turbulence Structure in Helsinki, Finland.<br>Boundary-Layer Meteorology, 2013, 146, 469-496.                                                                                             | 2.3 | 76        |
| 96  | Condensation of water vapor: Experimental determination of mass and thermal accommodation coefficients. Journal of Geophysical Research, 2006, 111, .                                                                                  | 3.3 | 75        |
| 97  | Environmental controls on the CO <sub>2</sub> exchange in north European mires. Tellus,<br>Series B: Chemical and Physical Meteorology, 2022, 59, 812.                                                                                 | 1.6 | 75        |
| 98  | Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem<br>respiration of Northern deciduous and coniferous forests. Tellus, Series B: Chemical and Physical<br>Meteorology, 2008, 60, 129-142. | 1.6 | 75        |
| 99  | Condensation in the continuum regime. Journal of Aerosol Science, 1991, 22, 337-346.                                                                                                                                                   | 3.8 | 74        |
| 100 | Vertical aerosol fluxes measured by the eddy covariance method and deposition of nucleation mode particles above a Scots pine forest in southern Finland. Journal of Geophysical Research, 2000, 105, 19905-19916.                     | 3.3 | 74        |
| 101 | Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake. Tellus,<br>Series B: Chemical and Physical Meteorology, 2022, 66, 22827.                                                                   | 1.6 | 74        |
| 102 | Mass accommodation coefficient of water vapor on liquid water. Geophysical Research Letters, 2004, 31, .                                                                                                                               | 4.0 | 73        |
| 103 | Fraction of natural area as main predictor of net CO <sub>2</sub> emissions from cities. Geophysical Research Letters, 2012, 39, .                                                                                                     | 4.0 | 73        |
| 104 | Station for Measuring Ecosystem-Atmosphere Relations: SMEAR. , 2013, , 471-487.                                                                                                                                                        |     | 73        |
| 105 | Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective.<br>Atmosphere, 2018, 9, 65.                                                                                                         | 2.3 | 73        |
| 106 | The interdependence of evaporation and settling for airborne freely falling droplets. Journal of<br>Aerosol Science, 1989, 20, 749-763.                                                                                                | 3.8 | 72        |
| 107 | Ozone deposition into a boreal forest over a decade of observations: evaluating deposition partitioning and driving variables. Atmospheric Chemistry and Physics, 2012, 12, 12165-12182.                                               | 4.9 | 72        |
| 108 | Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forests. Global Change Biology, 2004, 10, 37-51.                                                                       | 9.5 | 71        |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Fluxes of carbon dioxide and water vapour over Scots pine forest and clearing. Agricultural and Forest Meteorology, 2002, 111, 187-202.                                                | 4.8 | 70        |
| 110 | Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. Global<br>Change Biology, 2007, 13, 2110-2127.                                          | 9.5 | 69        |
| 111 | Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth System Science Data, 2019, 11, 1263-1289.                    | 9.9 | 69        |
| 112 | Empirical and optimal stomatal controls on leaf and ecosystem level CO2 and H2O exchange rates.<br>Agricultural and Forest Meteorology, 2011, 151, 1672-1689.                          | 4.8 | 67        |
| 113 | Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agricultural and Forest Meteorology, 2014, 188, 33-44.           | 4.8 | 67        |
| 114 | Refilling of a Hydraulically Isolated Embolized Xylem Vessel: Model Calculations. Annals of Botany, 2003, 91, 419-428.                                                                 | 2.9 | 66        |
| 115 | Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New Phytologist, 2020, 226, 690-703.                                             | 7.3 | 66        |
| 116 | Sugar transport together with environmental conditions controls time lags between xylem and stem diameter changes. Plant, Cell and Environment, 2003, 26, 1257-1265.                   | 5.7 | 64        |
| 117 | Measurements of ozone removal by Scots pine shoots: calibration of a stomatal uptake model including the non-stomatal component. Atmospheric Environment, 2004, 38, 2387-2398.         | 4.1 | 64        |
| 118 | Vertical variability and effect of stability on turbulence characteristics down to the floor of a pine forest. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 919-936. | 1.6 | 64        |
| 119 | Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland. Journal of Geophysical<br>Research G: Biogeosciences, 2015, 120, 1296-1314.                             | 3.0 | 64        |
| 120 | Revised eddy covariance flux calculation methodologies – effect on urban energy balance. Tellus,<br>Series B: Chemical and Physical Meteorology, 2022, 64, 18184.                      | 1.6 | 63        |
| 121 | On the theories of type 1 polar stratospheric cloud formation. Journal of Geophysical Research, 1995, 100, 11275.                                                                      | 3.3 | 62        |
| 122 | Relaxed Eddy Accumulation System for Size-Resolved Aerosol Particle Flux Measurements. Journal of<br>Atmospheric and Oceanic Technology, 2004, 21, 933-943.                            | 1.3 | 61        |
| 123 | Plantâ€mediated nitrous oxide emissions from beech ( Fagus sylvatica ) leaves. New Phytologist, 2005,<br>168, 93-98.                                                                   | 7.3 | 61        |
| 124 | Partitioning ozone fluxes between canopy and forest floor by measurements and a multi-layer model.<br>Agricultural and Forest Meteorology, 2013, 173, 85-99.                           | 4.8 | 61        |
| 125 | On the damping of temperature fluctuations in a circular tube relevant to the eddy covariance measurement technique. Journal of Geophysical Research, 1997, 102, 12789-12794.          | 3.3 | 60        |
| 126 | Pan-European delta13C values of air and organic matter from forest ecosystems. Global Change<br>Biology, 2005, 11, 1065-1093.                                                          | 9.5 | 60        |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Entrepreneurship and labor market institutions. Economic Modelling, 2005, 22, 828-847.                                                                                                                                                             | 3.8 | 60        |
| 128 | Continuous VOC flux measurements on boreal forest floor. Plant and Soil, 2013, 369, 241-256.                                                                                                                                                       | 3.7 | 59        |
| 129 | Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.                                                                             | 9.5 | 59        |
| 130 | ICOS eddy covariance flux-station site setup: a review. International Agrophysics, 2018, 32, 471-494.                                                                                                                                              | 1.7 | 59        |
| 131 | Properties of aerosol signature size distributions in the urban environment as derived by cluster analysis. Atmospheric Environment, 2012, 61, 350-360.                                                                                            | 4.1 | 58        |
| 132 | Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques. Biogeosciences, 2005, 2, 377-387.                                                                                                     | 3.3 | 57        |
| 133 | Autumn temperature and carbon balance of a boreal Scots pine forest in Southern Finland.<br>Biogeosciences, 2010, 7, 163-176.                                                                                                                      | 3.3 | 57        |
| 134 | Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions<br>in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric<br>Chemistry and Physics, 2016, 16, 14421-14461. | 4.9 | 57        |
| 135 | Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and<br>Improved Water Use Efficiency under Negative Pressure. Frontiers in Plant Science, 2017, 8, 54.                                              | 3.6 | 57        |
| 136 | Annual particle flux observations over a heterogeneous urban area. Atmospheric Chemistry and Physics, 2009, 9, 7847-7856.                                                                                                                          | 4.9 | 56        |
| 137 | Nitrogen balance of a boreal Scots pine forest. Biogeosciences, 2013, 10, 1083-1095.                                                                                                                                                               | 3.3 | 55        |
| 138 | Biophysical controls on CO <sub>2</sub> fluxes of three Northern forests based on long-term eddy covariance data. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 143-152.                                                          | 1.6 | 53        |
| 139 | Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields. Biogeosciences, 2013, 10, 6865-6877.                                                        | 3.3 | 53        |
| 140 | Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic<br>Lagrangian transport model. Atmospheric Chemistry and Physics, 2012, 12, 4843-4854.                                                                  | 4.9 | 52        |
| 141 | Latent heat exchange in the boreal and arctic biomes. Global Change Biology, 2014, 20, 3439-3456.                                                                                                                                                  | 9.5 | 52        |
| 142 | Uncertainties in measurement and modelling of net ecosystem exchange of a forest. Agricultural and<br>Forest Meteorology, 2006, 138, 244-257.                                                                                                      | 4.8 | 51        |
| 143 | Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions. Scientific Reports, 2016, 6, 25739.                                                                                                                   | 3.3 | 51        |
| 144 | Particle fluxes over forests: Analyses of flux methods and functional dependencies. Journal of<br>Geophysical Research, 2007, 112, .                                                                                                               | 3.3 | 50        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests. Atmospheric Chemistry and Physics, 2018, 18, 17863-17881.                                                           | 4.9  | 50        |
| 146 | An improvement of the method for calibrating measurements of photosynthetic CO2flux. Plant, Cell and Environment, 1999, 22, 1297-1301.                                                                                          | 5.7  | 49        |
| 147 | Measurements of aerosol particle dry deposition velocity using the relaxed eddy accumulation technique. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 381-386.                                                 | 1.6  | 49        |
| 148 | Mass transfer from a drop—II. Theoretical analysis of temperature dependent mass flux correlation.<br>International Journal of Heat and Mass Transfer, 1995, 38, 1705-1708.                                                     | 4.8  | 48        |
| 149 | The Helsinki Testbed: A Mesoscale Measurement, Research, and Service Platform. Bulletin of the American Meteorological Society, 2011, 92, 325-342.                                                                              | 3.3  | 48        |
| 150 | Flux footprints over complex terrain covered by heterogeneous forest. Agricultural and Forest<br>Meteorology, 2004, 127, 143-158.                                                                                               | 4.8  | 47        |
| 151 | Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process-based modelling. Agricultural and Forest Meteorology, 2012, 154-155, 99-112. | 4.8  | 47        |
| 152 | Estimation of forest–atmosphere CO2 exchange by eddy covariance and profile techniques.<br>Agricultural and Forest Meteorology, 2004, 126, 141-155.                                                                             | 4.8  | 45        |
| 153 | A case study of eddy covariance flux of N <sub>2</sub> O measured within forest ecosystems: quality control and flux error analysis. Biogeosciences, 2010, 7, 427-440.                                                          | 3.3  | 45        |
| 154 | On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning.<br>Biogeosciences, 2012, 9, 5243-5259.                                                                                           | 3.3  | 45        |
| 155 | Interpretation of aerosol particle fluxes over a pine forest: Dry deposition and random errors.<br>Journal of Geophysical Research, 2003, 108, .                                                                                | 3.3  | 44        |
| 156 | Determining the contribution of vertical advection to the net ecosystem exchange at Hyytiä́forest,<br>Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 900.                                              | 1.6  | 44        |
| 157 | Refilling of embolised conduits as a consequence of 'Münch water' circulation. Functional Plant<br>Biology, 2006, 33, 949.                                                                                                      | 2.1  | 44        |
| 158 | The Integrated Carbon Observation System in Europe. Bulletin of the American Meteorological Society, 2022, 103, E855-E872.                                                                                                      | 3.3  | 44        |
| 159 | A Three-dimensional Stomatal CO2Exchange Model Including Gaseous Phase and Leaf Mesophyll<br>Separated by Irregular Interface. Journal of Theoretical Biology, 1999, 196, 115-128.                                              | 1.7  | 43        |
| 160 | Ultraviolet light and leaf emission of NOx. Nature, 2003, 422, 134-134.                                                                                                                                                         | 27.8 | 43        |
| 161 | H2O and CO2fluxes at the floor of a boreal pine forest. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 167-178.                                                                                                 | 1.6  | 43        |
| 162 | Methodology for direct field measurements of ozone flux to foliage with shoot chambers.<br>Atmospheric Environment, 2002, 36, 19-29.                                                                                            | 4.1  | 42        |

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Relationships between Embolism, Stem Water Tension, and Diameter Changes. Journal of Theoretical<br>Biology, 2002, 215, 23-38.                                                                                 | 1.7  | 42        |
| 164 | Effect of clearcuts on footprints and flux measurements above a forest canopy. Agricultural and Forest Meteorology, 2005, 133, 182-196.                                                                        | 4.8  | 42        |
| 165 | Characterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types. , 2009, , 35-58.                                                                                    |      | 42        |
| 166 | Controls on winter ecosystem respiration in temperate and boreal ecosystems. Biogeosciences, 2011, 8, 2009-2025.                                                                                               | 3.3  | 42        |
| 167 | Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA. Environmental Research Letters, 2011, 6, 024022.                                              | 5.2  | 42        |
| 168 | Species traits and inertial deposition of fungal spores. Journal of Aerosol Science, 2013, 61, 81-98.                                                                                                          | 3.8  | 42        |
| 169 | Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements.<br>Biogeosciences, 2013, 10, 3749-3765.                                                                    | 3.3  | 42        |
| 170 | Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome.<br>Nature Communications, 2014, 5, 4270.                                                                 | 12.8 | 42        |
| 171 | Modeling the dynamics of pressure propagation and diameter variation in tree sapwood. Tree Physiology, 2005, 25, 1091-1099.                                                                                    | 3.1  | 41        |
| 172 | Highâ€frequency measurements of productivity of planktonic algae using rugged nondispersive infrared carbon dioxide probes. Limnology and Oceanography: Methods, 2008, 6, 347-354.                             | 2.0  | 41        |
| 173 | Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis. Tree Physiology, 2009, 29, 621-639.    | 3.1  | 41        |
| 174 | Air pollution in eastern Lapland : challenge for an environmental measurement station Silva Fennica,<br>1994, 28, .                                                                                            | 1.3  | 41        |
| 175 | Analysis of measurement techniques to determine dry deposition velocities of aerosol particles with diameters less than 100 nm. Journal of Aerosol Science, 2003, 34, 747-764.                                 | 3.8  | 40        |
| 176 | Modeling GPP in the Nordic forest landscape with MODIS time series data—Comparison with the<br>MODIS GPP product. Remote Sensing of Environment, 2012, 126, 136-147.                                           | 11.0 | 40        |
| 177 | Greenhouse gas fluxes in a drained peatland forest during spring frost-thaw event. Biogeosciences, 2010, 7, 1715-1727.                                                                                         | 3.3  | 39        |
| 178 | Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?. Global Change Biology, 2016, 22, 4096-4113.                                                         | 9.5  | 39        |
| 179 | Experimental validation of footprint models for eddy covariance CO2 flux measurements above<br>grassland by means of natural and artificial tracers. Agricultural and Forest Meteorology, 2017, 242,<br>75-84. | 4.8  | 39        |
| 180 | Strong radiative effect induced by clouds and smoke on forest net ecosystem productivity in central<br>Siberia. Agricultural and Forest Meteorology, 2018, 250-251, 376-387.                                   | 4.8  | 39        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | CO2FLUXES NEAR A FOREST EDGE: A NUMERICAL STUDY. , 2008, 18, 1454-1469.                                                                                                                                                |     | 38        |
| 182 | Numerical analysis of flux footprints for different landscapes. Theoretical and Applied Climatology, 2005, 80, 169-185.                                                                                                | 2.8 | 36        |
| 183 | Field measurements of ultrasonic acoustic emissions and stem diameter variations. New insight into the relationship between xylem tensions and embolism. Tree Physiology, 2005, 25, 237-243.                           | 3.1 | 36        |
| 184 | Measuring methane emissions from a landfill using a cost-effective micrometeorological method.<br>Geophysical Research Letters, 2005, 32, n/a-n/a.                                                                     | 4.0 | 36        |
| 185 | Diagnosing the Surface Layer Parameters for Dispersion Models within the<br>Meteorological-to-Dispersion Modeling Interface. Journal of Applied Meteorology and Climatology,<br>2010, 49, 221-233.                     | 1.5 | 36        |
| 186 | Phenology of Vegetation Photosynthesis. Tasks for Vegetation Science, 2003, , 467-485.                                                                                                                                 | 0.6 | 36        |
| 187 | The effect of hygroscopicity on cloud droplet formation. Tellus, Series B: Chemical and Physical Meteorology, 1996, 48, 347-360.                                                                                       | 1.6 | 35        |
| 188 | On the condensational growth of a multicomponent droplet. Journal of Aerosol Science, 1997, 28, 553-564.                                                                                                               | 3.8 | 35        |
| 189 | Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates. Journal of Geophysical Research, 2011, 116, .                                                 | 3.3 | 35        |
| 190 | Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 2016, 16, 1017-1028.                                                                                               | 4.9 | 35        |
| 191 | Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190516. | 4.0 | 35        |
| 192 | Extended hydrates interaction model: Hydrate formation and the energetics of binary homogeneous nucleation. Journal of Chemical Physics, 1991, 94, 7411-7413.                                                          | 3.0 | 34        |
| 193 | Upward fluxes of particles over forests: when, where, why?. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 372-380.                                                                                    | 1.6 | 34        |
| 194 | Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest. Atmospheric Chemistry and Physics, 2017, 17, 11453-11465.                                                                                | 4.9 | 34        |
| 195 | Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 17437-17450.                                                      | 4.9 | 34        |
| 196 | Influence of Dynamic Ozone Dry Deposition on Ozone Pollution. Journal of Geophysical Research D:<br>Atmospheres, 2020, 125, e2020JD032398.                                                                             | 3.3 | 34        |
| 197 | Effect of variations of PAR on CO2 exchange estimation for Scots pine. Agricultural and Forest Meteorology, 2000, 100, 337-347.                                                                                        | 4.8 | 33        |
| 198 | Long-term aerosol particle flux observations part I: Uncertainties and time-average statistics.<br>Atmospheric Environment, 2009, 43, 3431-3439.                                                                       | 4.1 | 33        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Evolution of the nocturnal decoupled layer in a pine forest canopy. Agricultural and Forest<br>Meteorology, 2013, 174-175, 15-27.                                                                                          | 4.8 | 33        |
| 200 | The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 2020, 12, 1295-1320.                                                                 | 9.9 | 33        |
| 201 | An open chamber system for measuring soil surface CO2efflux: Analysis of error sources related to the chamber system. Journal of Geophysical Research, 2001, 106, 7985-7992.                                               | 3.3 | 32        |
| 202 | Experimental study of sticking probabilities for condensation of nitric acid — water vapor mixtures.<br>Journal of Aerosol Science, 2001, 32, 913-932.                                                                     | 3.8 | 32        |
| 203 | A temperature-controlled spectrometer system for continuous and unattended measurements of canopy spectral radiance and reflectance. International Journal of Remote Sensing, 2014, 35, 1769-1785.                         | 2.9 | 32        |
| 204 | Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland.<br>Quaternary Science Reviews, 2016, 142, 1-15.                                                                           | 3.0 | 32        |
| 205 | Spring initiation and autumn cessation of boreal coniferous forest CO <sub>2</sub><br>exchange assessed by meteorological and biological variables. Tellus, Series B: Chemical and Physical<br>Meteorology, 2022, 61, 701. | 1.6 | 31        |
| 206 | The effects of the canopy medium on dry deposition velocities of aerosol particles in the canopy sub-layer above forested ecosystems. Atmospheric Environment, 2011, 45, 1203-1212.                                        | 4.1 | 31        |
| 207 | An Overview of the Urban Boundary Layer Atmosphere Network in Helsinki. Bulletin of the American<br>Meteorological Society, 2013, 94, 1675-1690.                                                                           | 3.3 | 31        |
| 208 | The biophysical climate mitigation potential of boreal peatlands during the growing season.<br>Environmental Research Letters, 2020, 15, 104004.                                                                           | 5.2 | 31        |
| 209 | Assessing seasonality of biochemical CO <sub>2</sub> exchange model parameters from micrometeorological flux observations at boreal coniferous forest.<br>Biogeosciences, 2008, 5, 1625-1639.                              | 3.3 | 31        |
| 210 | Compensation point of NOx exchange: Net result of NOx consumption and production. Agricultural and Forest Meteorology, 2009, 149, 1073-1081.                                                                               | 4.8 | 30        |
| 211 | Aerosol particle dry deposition to canopy and forest floor measured by twoâ€layer eddy covariance system. Journal of Geophysical Research, 2009, 114, .                                                                    | 3.3 | 30        |
| 212 | Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2470-2475.                             | 7.1 | 30        |
| 213 | Soil greenhouse gas emissions under different land-use types in savanna ecosystems of Kenya.<br>Biogeosciences, 2020, 17, 2149-2167.                                                                                       | 3.3 | 30        |
| 214 | Predicting the dry deposition of aerosolâ€sized particles using layerâ€resolved canopy and pipe flow<br>analogy models: Role of turbophoresis. Journal of Geophysical Research, 2010, 115, .                               | 3.3 | 29        |
| 215 | Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer. Geoscientific Model Development, 2016, 9, 2925-2949.                                       | 3.6 | 29        |
| 216 | Diurnal and Seasonal Solar Induced Chlorophyll Fluorescence and Photosynthesis in a Boreal Scots<br>Pine Canopy. Remote Sensing, 2019, 11, 273.                                                                            | 4.0 | 29        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Availability, accessibility, quality and comparability of monitoring data for European forests for use in air pollution and climate change science. IForest, 2011, 4, 162-166.                                   | 1.4 | 28        |
| 218 | Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions. Biogeosciences, 2015, 12, 415-432.                                                         | 3.3 | 28        |
| 219 | UV-induced NOy emissions from Scots pine: Could they originate from photolysis of deposited HNO3?.<br>Atmospheric Environment, 2006, 40, 6201-6213.                                                              | 4.1 | 27        |
| 220 | Precipitation and net ecosystem exchange are the most important drivers of DOC flux in upland boreal catchments. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1861-1878.                        | 3.0 | 27        |
| 221 | Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in aÂboreal forest in southern Finland. Atmospheric Chemistry and Physics, 2018, 18, 1363-1378.                                       | 4.9 | 27        |
| 222 | Vertical advection and nocturnal deposition of ozone over a boreal pine forest. Atmospheric Chemistry and Physics, 2009, 9, 2089-2095.                                                                           | 4.9 | 26        |
| 223 | Modeling acclimation of photosynthesis to temperature in evergreen conifer forests. New<br>Phytologist, 2010, 188, 175-186.                                                                                      | 7.3 | 26        |
| 224 | Footprint Analysis. , 2012, , 211-261.                                                                                                                                                                           |     | 26        |
| 225 | Inter- and intra-annual dynamics of photosynthesis differ between forest floor vegetation and tree canopy in a subarctic Scots pine stand. Agricultural and Forest Meteorology, 2019, 271, 1-11.                 | 4.8 | 26        |
| 226 | Comparisons of uncoupled, film theoretical and exact solutions for binary droplet evaporation and condensation. Physica A: Statistical Mechanics and Its Applications, 1993, 192, 107-123.                       | 2.6 | 25        |
| 227 | Long-term aerosol particle flux observations. Part II: Particle size statistics and deposition velocities.<br>Atmospheric Environment, 2011, 45, 3794-3805.                                                      | 4.1 | 25        |
| 228 | Eddy Covariance Measurements over Lakes. , 2012, , 365-376.                                                                                                                                                      |     | 25        |
| 229 | Uncertainty of eddy covariance flux measurements over an urban area based on two towers.<br>Atmospheric Measurement Techniques, 2018, 11, 5421-5438.                                                             | 3.1 | 25        |
| 230 | Changes in cloud properties due to NOxemissions. Geophysical Research Letters, 1995, 22, 239-242.                                                                                                                | 4.0 | 24        |
| 231 | Carbon balance gradient in European forests: should we doubt â€~surprising' results? A reply to<br>Piovesan & Adams. Journal of Vegetation Science, 2001, 12, 145-150.                                           | 2.2 | 24        |
| 232 | Flux and concentration footprints. Agricultural and Forest Meteorology, 2004, 127, 111-116.                                                                                                                      | 4.8 | 24        |
| 233 | Footprint Evaluation for Flux and Concentration Measurements for an Urban-Like Canopy with<br>Coupled Lagrangian Stochastic and Large-Eddy Simulation Models. Boundary-Layer Meteorology, 2015,<br>157, 191-217. | 2.3 | 24        |
| 234 | HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands. Geoscientific Model<br>Development, 2017, 10, 4665-4691.                                                                            | 3.6 | 24        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | On the Concept of Leaf Boundary Layer Resistance for Forced Convection. Journal of Theoretical<br>Biology, 1998, 194, 91-100.                                                                                                       | 1.7 | 23        |
| 236 | Simulations of Water Flow Through Bordered Pits of Conifer Xylem. Journal of Statistical Physics, 2002, 107, 121-142.                                                                                                               | 1.2 | 23        |
| 237 | Towards a transnational system of supersites for forest monitoring and research in Europe - an overview on present state and future recommendations. IForest, 2011, 4, 167-171.                                                     | 1.4 | 23        |
| 238 | Does canopy mean nitrogen concentration explain variation in canopy light use efficiency across 14 contrasting forest sites?. Tree Physiology, 2012, 32, 200-218.                                                                   | 3.1 | 23        |
| 239 | Importance of vegetation classes in modeling CH4 emissions from boreal and subarctic wetlands in Finland. Science of the Total Environment, 2016, 572, 1111-1122.                                                                   | 8.0 | 23        |
| 240 | Does growing atmospheric CO <sub>2</sub> explain increasing carbon sink in a boreal coniferous forest?. Global Change Biology, 2022, 28, 2910-2929.                                                                                 | 9.5 | 23        |
| 241 | Analysis of stomatal CO 2 uptake by a threeâ€dimensional cylindrically symmetric model. New<br>Phytologist, 1996, 132, 235-245.                                                                                                     | 7.3 | 22        |
| 242 | Detecting the critical periods that underpin interannual fluctuations in the carbon balance of<br>European forests. Journal of Geophysical Research, 2010, 115, .                                                                   | 3.3 | 22        |
| 243 | SMEAR Estonia: Perspectives of a large-scale forest ecosystem – atmosphere research infrastructure.<br>Forestry Studies, 2015, 63, 56-84.                                                                                           | 0.2 | 22        |
| 244 | Variation in photosynthetic properties among bog plants. Botany, 2016, 94, 1127-1139.                                                                                                                                               | 1.0 | 22        |
| 245 | Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration. Biogeosciences, 2017, 14, 257-269.                                                                                           | 3.3 | 22        |
| 246 | Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model. Global Ecology and Biogeography, 2019, 28, 1351-1365.                                                      | 5.8 | 22        |
| 247 | Temperature dependence of leafâ€level CO 2 fixation: revising biochemical coefficients through analysis of leaf threeâ€dimensional structure. New Phytologist, 2005, 166, 205-215.                                                  | 7.3 | 21        |
| 248 | Effects of Competition, Drought Stress and Photosynthetic Productivity on the Radial Growth of<br>White Spruce in Western Canada. Frontiers in Plant Science, 2017, 8, 1915.                                                        | 3.6 | 21        |
| 249 | Numerical framework for the computation of urban flux footprints employing large-eddy simulation and Lagrangian stochastic modeling. Geoscientific Model Development, 2017, 10, 4187-4205.                                          | 3.6 | 21        |
| 250 | Networked web-cameras monitor congruent seasonal development of birches with phenological field observations. Agricultural and Forest Meteorology, 2018, 249, 335-347.                                                              | 4.8 | 21        |
| 251 | Small spatial variability in methane emission measured from a wet patterned boreal bog.<br>Biogeosciences, 2018, 15, 1749-1761.                                                                                                     | 3.3 | 21        |
| 252 | Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling.<br>Biogeosciences, 2020, 17, 1583-1620. | 3.3 | 21        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4).<br>Biogeosciences, 2021, 18, 6547-6565.                                                                                                                | 3.3 | 21        |
| 254 | A model for binary droplet evaporation and condensation, and its application for ammonia droplets in<br>humid air. Atmospheric Environment Part A General Topics, 1992, 26, 1573-1581.                                                         | 1.3 | 20        |
| 255 | A Semiphenomenological Model for Stomatal Gas Transport. Journal of Theoretical Biology, 1994, 171, 291-301.                                                                                                                                   | 1.7 | 20        |
| 256 | The effect of hygroscopicity on cloud droplet formation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 48, 347.                                                                                                                   | 1.6 | 20        |
| 257 | Switching costs and relationship profits in bank lending. Journal of Banking and Finance, 2007, 31, 477-493.                                                                                                                                   | 2.9 | 20        |
| 258 | Photosynthetic production of ground vegetation in different-aged Scots pine ( <i>Pinus sylvestris</i> )<br>forests. Canadian Journal of Forest Research, 2011, 41, 2020-2030.                                                                  | 1.7 | 20        |
| 259 | Photosynthesis of ground vegetation in different aged pine forests: Effect of environmental factors predicted with a process-based model. Journal of Vegetation Science, 2011, 22, 96-110.                                                     | 2.2 | 20        |
| 260 | Direct and Adjoint Monte Carlo Algorithms for the Footprint Problem. Monte Carlo Methods and Applications, 1999, 5, .                                                                                                                          | 0.8 | 19        |
| 261 | Tree scale distributed multipoint measuring system of photosynthetically active radiation.<br>Agricultural and Forest Meteorology, 2001, 106, 71-80.                                                                                           | 4.8 | 19        |
| 262 | Micrometeorological Observations of a Microburst in Southern Finland. Boundary-Layer<br>Meteorology, 2007, 125, 343-359.                                                                                                                       | 2.3 | 19        |
| 263 | The effect of a transaction tax on exchange rate volatility. International Journal of Finance and Economics, 2010, 15, 123-133.                                                                                                                | 3.5 | 19        |
| 264 | Efficient gas exchange between a boreal river and the atmosphere. Geophysical Research Letters, 2013, 40, 5683-5686.                                                                                                                           | 4.0 | 19        |
| 265 | Asymmetric Information in Credit Markets and Entrepreneurial Risk Taking. SSRN Electronic Journal, 0,                                                                                                                                          | 0.4 | 19        |
| 266 | PAN EURASIAN EXPERIMENT (PEEX) - A RESEARCH INITIATIVE MEETING THE GRAND CHALLENGES OF THE CHANGING ENVIRONMENT OF THE NORTHERN PAN-EURASIAN ARCTIC-BOREAL AREAS. Geography, Environment, Sustainability, 2014, 7, 13-48.                      | 1.3 | 19        |
| 267 | CH4 oxidation in a boreal lake during the development of hypolimnetic hypoxia. Aquatic Sciences, 2020, 82, 19.                                                                                                                                 | 1.5 | 18        |
| 268 | Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling<br>climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials.<br>Biogeosciences, 2020, 17, 1621-1654. | 3.3 | 18        |
| 269 | Portfolio Effects and Efficiency of Lending under Basel II. SSRN Electronic Journal, 0, , .                                                                                                                                                    | 0.4 | 18        |
| 270 | A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus,<br>Series B: Chemical and Physical Meteorology, 2008, 60, .                                                                                     | 1.6 | 18        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Field-scale simulation of methane emissions from coastal wetlands in China using an improved version of CH4MOD wetland. Science of the Total Environment, 2016, 559, 256-267.               | 8.0 | 17        |
| 272 | Boreal bog plant communities along a water table gradient differ in their standing biomass but not their biomass production. Journal of Vegetation Science, 2018, 29, 136-146.              | 2.2 | 17        |
| 273 | Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog. Biogeosciences, 2019, 16, 2409-2421.                                                | 3.3 | 17        |
| 274 | Methane production and oxidation potentials along a fenâ€bog gradient from southern boreal to<br>subarctic peatlands in Finland. Global Change Biology, 2021, 27, 4449-4464.                | 9.5 | 17        |
| 275 | Kinetics of particle growthin supersaturated binary vapor mixtures. Journal of Aerosol Science, 1991, 22, S51-S54.                                                                          | 3.8 | 16        |
| 276 | Rigorous treatment of time-dependent trace gas uptake by droplets including bulk diffusion and surface accommodation. Journal of Aerosol Science, 2001, 32, 843-860.                        | 3.8 | 16        |
| 277 | A model of bubble growth leading to xylem conduit embolism. Journal of Theoretical Biology, 2007, 249, 111-123.                                                                             | 1.7 | 16        |
| 278 | Technical note: Comparison of methane ebullition modelling approaches used in terrestrial wetland models. Biogeosciences, 2018, 15, 937-951.                                                | 3.3 | 16        |
| 279 | A Structure Function Model Recovers the Many Formulations for Airâ€Water Gas Transfer Velocity.<br>Water Resources Research, 2018, 54, 5905-5920.                                           | 4.2 | 16        |
| 280 | Relationship between aerodynamic roughness length and bulk sedge leaf area index in a mixedâ€species<br>boreal mire complex. Geophysical Research Letters, 2017, 44, 5836-5843.             | 4.0 | 15        |
| 281 | Binary droplet evaporation in the presence of an inert gas: An exact solution of the Maxwell-Stefan equations. International Communications in Heat and Mass Transfer, 1991, 18, 117-126.   | 5.6 | 14        |
| 282 | The homogeneous equilibrium approximation in models of aerosol cloud dispersion. Atmospheric<br>Environment, 1994, 28, 2763-2776.                                                           | 4.1 | 14        |
| 283 | A model for NOx–O3–terpene chemistry in chamber measurements of plant gas exchange. Atmospheric<br>Environment, 1999, 33, 2145-2156.                                                        | 4.1 | 14        |
| 284 | Do tree stems shrink and swell with the tides?. Tree Physiology, 2000, 20, 633-635.                                                                                                         | 3.1 | 14        |
| 285 | Forest floor versus ecosystem CO <sub>2</sub> exchange along boreal ecotone between<br>upland forest and lowland mire. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 153.  | 1.6 | 14        |
| 286 | Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest.<br>Biogeosciences, 2012, 9, 2033-2044.                                                       | 3.3 | 14        |
| 287 | Impacts of climate and reclamation on temporal variations in<br>CH <sub>4</sub> emissions from different wetlands in China: from 1950 to<br>2010. Biogeosciences, 2015, 12, 6853-6868.      | 3.3 | 14        |
| 288 | Effects of Climate Change on CO <sub>2</sub> Concentration and Efflux in a Humic Boreal Lake: A<br>Modeling Study. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2212-2233. | 3.0 | 14        |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Evaluation of mean concentration and fluxes in turbulent flows by Lagrangian stochastic models.<br>Mathematics and Computers in Simulation, 2001, 54, 459-476.                                                                                    | 4.4 | 13        |
| 290 | The dependence of the $\hat{l}^2$ coefficient of REA system with dynamic deadband on atmospheric conditions. Environmental Pollution, 2008, 152, 597-603.                                                                                         | 7.5 | 13        |
| 291 | Photosynthesis of boreal ground vegetation after a forest clear-cut. Biogeosciences, 2009, 6, 2495-2507.                                                                                                                                          | 3.3 | 13        |
| 292 | Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and<br>higher-order moments at the forest–air interface. Atmospheric Measurement Techniques, 2021, 14,<br>2409-2427.                                    | 3.1 | 13        |
| 293 | Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC. Geoscientific Model Development, 2018, 11, 1199-1228.                                                                                 | 3.6 | 12        |
| 294 | Comparison of an optimal stomatal regulation model and a biochemical model in explaining CO2 exchange in field conditions. Silva Fennica, 2002, 36, .                                                                                             | 1.3 | 12        |
| 295 | Sorption-Caused Attenuation and Delay of Water Vapor Signals in Eddy-Covariance Sampling Tubes and Filters. Journal of Atmospheric and Oceanic Technology, 2014, 31, 2629-2649.                                                                   | 1.3 | 11        |
| 296 | Methane budget estimates in Finland from the CarbonTracker Europe-CH <sub>4</sub> data<br>assimilation system. Tellus, Series B: Chemical and Physical Meteorology, 2022, 71, 1565030.                                                            | 1.6 | 11        |
| 297 | Varying Vegetation Composition, Respiration and Photosynthesis Decrease Temporal Variability of the CO2 Sink in a Boreal Bog. Ecosystems, 2020, 23, 842-858.                                                                                      | 3.4 | 11        |
| 298 | Variable Physical Drivers of Near‣urface Turbulence in a Regulated River. Water Resources Research, 2021, 57, e2020WR027939.                                                                                                                      | 4.2 | 11        |
| 299 | Plant mediated methane efflux from a boreal peatland complex. Plant and Soil, 2022, 471, 375-392.                                                                                                                                                 | 3.7 | 11        |
| 300 | An analytical expression for the rate of binary condensational particle growth: Comparison with numerical results. Journal of Aerosol Science, 1992, 23, 133-136.                                                                                 | 3.8 | 10        |
| 301 | Gross primary production simulation in a coniferous forest using a daily gas exchange model with seasonal change of leaf physiological parameters derived from remote sensing data. International Journal of Remote Sensing, 2009, 30, 3013-3025. | 2.9 | 10        |
| 302 | Tube transport of water vapor with condensation and desorption. Applied Physics Letters, 2013, 102, 194101.                                                                                                                                       | 3.3 | 10        |
| 303 | A simple CO2 exchange model simulates the seasonal leaf area development of peatland sedges.<br>Ecological Modelling, 2015, 314, 32-43.                                                                                                           | 2.5 | 10        |
| 304 | Lakeâ€Atmosphere Heat Flux Dynamics of a Thermokarst Lake in Arctic Siberia. Journal of Geophysical<br>Research D: Atmospheres, 2018, 123, 5222-5239.                                                                                             | 3.3 | 10        |
| 305 | On droplet evaporation in the presence of a condensing substance: the effect of internal diffusion.<br>International Journal of Heat and Mass Transfer, 1993, 36, 695-703.                                                                        | 4.8 | 9         |
| 306 | Experimental and numerical analysis of stomatal absorption of sulphur dioxide and transpiration by pine needles. Atmospheric Environment, 1995, 29, 825-836.                                                                                      | 4.1 | 9         |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | CH <sub>4</sub> and N <sub>2</sub> O dynamics<br>in the boreal forest–mire ecotone. Biogeosciences, 2015, 12, 281-297.                                                                              | 3.3  | 9         |
| 308 | Ejective and Sweeping Motions Above a Peatland and Their Role in Relaxed-Eddy-Accumulation<br>Measurements and Turbulent Transport Modelling. Boundary-Layer Meteorology, 2018, 169, 163-184.       | 2.3  | 9         |
| 309 | Selected breakpoints of net forest carbon uptake at four eddy-covariance sites. Tellus, Series B:<br>Chemical and Physical Meteorology, 2022, 73, 1915648.                                          | 1.6  | 9         |
| 310 | The Multiscale Monitoring of Peatland Ecosystem Carbon Cycling in the Middle Taiga Zone of Western<br>Siberia: The Mukhrino Bog Case Study. Land, 2021, 10, 824.                                    | 2.9  | 9         |
| 311 | Bark Transpiration Rates Can Reach Needle Transpiration Rates Under Dry Conditions in a Semi-arid<br>Forest. Frontiers in Plant Science, 2021, 12, 790684.                                          | 3.6  | 9         |
| 312 | Dynamic Surface Tension Enhances the Stability of Nanobubbles in Xylem Sap. Frontiers in Plant<br>Science, 2021, 12, 732701.                                                                        | 3.6  | 9         |
| 313 | Long-range transport of ammonia released in a major chemical accident at Ionava, Lithuania. Journal of Hazardous Materials, 1993, 35, 1-16.                                                         | 12.4 | 8         |
| 314 | Model simulation of the amount of soluble mass during cloud droplet formation. Atmospheric Environment, 1996, 30, 1773-1785.                                                                        | 4.1  | 8         |
| 315 | Correlated change in normalized difference vegetation index and the seasonal trajectory of photosynthetic capacity in a conifer stand. International Journal of Remote Sensing, 2009, 30, 983-1001. | 2.9  | 8         |
| 316 | Impact of coordinate rotation on eddy covariance fluxes at complex sites. Agricultural and Forest<br>Meteorology, 2020, 287, 107940.                                                                | 4.8  | 8         |
| 317 | Coniferous Forests (Scots and Maritime Pine): Carbon and Water Fluxes, Balances, Ecological and Ecophysiological Determinants. Ecological Studies, 2003, , 71-97.                                   | 1.2  | 8         |
| 318 | Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications Earth & Environment, 2022, 3, .                                 | 6.8  | 8         |
| 319 | A model for mass and heat transfer in an aerosol cloud. Journal of Hazardous Materials, 1994, 38, 293-311.                                                                                          | 12.4 | 7         |
| 320 | Aerosol formation in diffusive boundary layer: Binary homogeneous nucleation of ammonia and water vapours. Journal of Aerosol Science, 1995, 26, 547-558.                                           | 3.8  | 7         |
| 321 | Evaluation of homogeneous droplet formation inside UCPC (TSI model 3025). Journal of Aerosol<br>Science, 1995, 26, 1003-1008.                                                                       | 3.8  | 7         |
| 322 | Winter respiratory C losses provide explanatory power for net ecosystem productivity. Journal of<br>Geophysical Research G: Biogeosciences, 2017, 122, 243-260.                                     | 3.0  | 7         |
| 323 | Soil concentrations and soil–atmosphere exchange of alkylamines in a boreal Scots pine forest.<br>Biogeosciences, 2017, 14, 1075-1091.                                                              | 3.3  | 7         |
| 324 | Modeling Long-Term Temporal Variation of Dew Formation in Jordan and Its Link to Climate Change.<br>Water (Switzerland), 2020, 12, 2186.                                                            | 2.7  | 7         |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest. Atmospheric Chemistry and Physics, 2022, 22, 2569-2584.                        | 4.9 | 7         |
| 326 | Biogenic aerosol formation in the boreal forest. Journal of Aerosol Science, 2000, 31, 598-599.                                                                                           | 3.8 | 6         |
| 327 | Modeling the SAR response of pine forest in Southern Finland. , 0, , .                                                                                                                    |     | 6         |
| 328 | Stochastic Lagrangian footprint calculations over a surface with an abrupt change of roughness height. Monte Carlo Methods and Applications, 2003, 9, .                                   | 0.8 | 6         |
| 329 | Stomatal-scale modelling of the competition between ozone sinks at the air–leaf interface. Tellus,<br>Series B: Chemical and Physical Meteorology, 2022, 60, 381.                         | 1.6 | 6         |
| 330 | Why Do We Need Countercyclical Capital Requirements?. Journal of Financial Services Research, 2014, 46, 55-76.                                                                            | 1.5 | 6         |
| 331 | Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia.<br>Atmosphere, 2021, 12, 984.                                                          | 2.3 | 6         |
| 332 | Upward fluxes of particles over forests: when, where, why?. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, .                                                              | 1.6 | 6         |
| 333 | Condensation and evaporation of binary droplets with internal mass transfer. Journal of Aerosol<br>Science, 1990, 21, S7-S10.                                                             | 3.8 | 5         |
| 334 | Activation and growth of cloud condensation nuclei by binary nucleation and condensation processes. Journal of Aerosol Science, 1992, 23, 113-116.                                        | 3.8 | 5         |
| 335 | An Analytical Model for the Two-Scalar Covariance Budget Inside a Uniform Dense Canopy.<br>Boundary-Layer Meteorology, 2009, 131, 173-192.                                                | 2.3 | 5         |
| 336 | Seasonal and Diurnal Variations in Atmospheric and Soil Air <sup>14</sup> CO <sub>2</sub> in a Boreal<br>Scots Pine Forest. Radiocarbon, 2018, 60, 283-297.                               | 1.8 | 5         |
| 337 | High-frequency productivity estimates for a lake from free-water<br>CO <sub>2</sub> concentration measurements. Biogeosciences, 2018, 15,<br>2021-2032.                                   | 3.3 | 5         |
| 338 | Applicability and consequences of the integration of alternative models for<br>CO <sub>2</sub> transfer velocity into a process-based lake model.<br>Biogeosciences, 2019, 16, 3297-3317. | 3.3 | 5         |
| 339 | Spatial and Temporal Investigation of Dew Potential based on Long-Term Model Simulations in Iran.<br>Water (Switzerland), 2019, 11, 2463.                                                 | 2.7 | 5         |
| 340 | Carbon balance of a Finnish bog: temporal variability and limiting factors based on 6Âyears of eddy-covariance data. Biogeosciences, 2021, 18, 4681-4704.                                 | 3.3 | 5         |
| 341 | Carbon dioxide and methane fluxes from different surface types in a created urban wetland.<br>Biogeosciences, 2020, 17, 3409-3425.                                                        | 3.3 | 5         |
| 342 | Evaporation of polydisperse organicaerosols at ambient conditions. Journal of Aerosol Science, 1991, 22, S81-S84.                                                                         | 3.8 | 4         |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Evaporation of polydisperse ethanol aerosols in humid environment. International Journal of Heat<br>and Mass Transfer, 1993, 36, 705-711.                                                 | 4.8 | 4         |
| 344 | The sauna - revisited. Europhysics News, 2007, 38, 32-32.                                                                                                                                 | 0.3 | 4         |
| 345 | Financial Matching, Asymmetric Information and Entrepreneurial Risk Taking. Scandinavian Journal of Economics, 2007, 109, 469-485.                                                        | 1.4 | 4         |
| 346 | MIDDLEMEN AND THE ADVERSE SELECTION PROBLEM. Bulletin of Economic Research, 2008, 60, 1-11.                                                                                               | 1.1 | 4         |
| 347 | The evaporation of airborne droplets in a turbulent two-phase jet. Journal of Aerosol Science, 1988, 19, 871-874.                                                                         | 3.8 | 3         |
| 348 | Modelling of Light-driven RuBP Regeneration, Carboxylation and CO2Diffusion for Leaf<br>Photosynthesis. Journal of Theoretical Biology, 1997, 188, 143-151.                               | 1.7 | 3         |
| 349 | ADVERSE SELECTION IN DYNAMIC MATCHING MARKETS. Bulletin of Economic Research, 2015, 67, 115-133.                                                                                          | 1.1 | 3         |
| 350 | Estimation of Biomass Increase and CUE at a Young Temperate Scots Pine Stand Concerning Drought<br>Occurrence by Combining Eddy Covariance and Biometric Methods. Forests, 2021, 12, 867. | 2.1 | 3         |
| 351 | Phase transitions in Finnish sauna. , 1996, , 403-406.                                                                                                                                    |     | 3         |
| 352 | The physics of aerosol formation in diffusive boundary layers. Journal of Aerosol Science, 1992, 23, 121-124.                                                                             | 3.8 | 2         |
| 353 | 11.O.02 Evaporation of a drop. a temperature dependent mass transfer correlation. Journal of Aerosol Science, 1994, 25, 99-100.                                                           | 3.8 | 2         |
| 354 | Comment on "Postnucleation droplet growth in supersaturated gas with arbitrary vapor<br>concentration―[J. Chem. Phys. 120, 10455 (2004)]. Journal of Chemical Physics, 2004, 121, 8163.   | 3.0 | 2         |
| 355 | An Attempt to Utilize a Regional Dew Formation Model in Kenya. Water (Switzerland), 2021, 13, 1261.                                                                                       | 2.7 | 2         |
| 356 | Physical Chemistry of Aerosol Formation. , 2000, , 23-46.                                                                                                                                 |     | 2         |
| 357 | Formation and growth of water — nitric acid aerosols. Journal of Aerosol Science, 1991, 22, S93-S96.                                                                                      | 3.8 | 1         |
| 358 | Correction for the Brownian coagulation coefficient due to van der Waals forces between non-equal sized particles. Journal of Aerosol Science, 1991, 22, S105-S107.                       | 3.8 | 1         |
| 359 | A theoretical study on ternary condensation and evaporation of water, ammonia and hydrochlorid<br>acid. Journal of Aerosol Science, 1997, 28, S177-S178.                                  | 3.8 | 1         |
| 360 | Carbon Balance Gradient in European Forests: Should We Doubt 'Surprising' Results? A Reply to<br>Piovesan & Adams. Journal of Vegetation Science, 2001, 12, 145.                          | 2.2 | 1         |

| #   | Article                                                                                                                                                                                                                                     | IF                     | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|
| 361 | Micrometeorological observations of a microburst in southern Finland. , 2007, , 187-203.                                                                                                                                                    |                        | 1         |
| 362 | Corrigendum to "Four-year (2006–2009) eddy covariance measurements of<br>CO <sub>2</sub> flux over an urban area in Beijing" published in<br>Atmos. Chem. Phys., 12, 7881–7892, 2012. Atmospheric Chemistry and Physics, 2013, 13, 647-647. | 4.9                    | 1         |
| 363 | Credit Allocation, Capital Requirements and Procyclicality. SSRN Electronic Journal, 0, , .                                                                                                                                                 | 0.4                    | 1         |
| 364 | Hydration of acid vapours in stratospheric conditions. Journal of Aerosol Science, 1991, 22, S133-S136.                                                                                                                                     | 3.8                    | 0         |
| 365 | 16 O 03 The radiative properties of convective clouds: The relationship between nitric acid vapour and cloud droplet concentration. Journal of Aerosol Science, 1993, 24, S113-S114.                                                        | 3.8                    | 0         |
| 366 | The homogeneous equilibrium approximation in heavy gas dispersion models. Journal of Aerosol<br>Science, 1995, 26, S641-S642.                                                                                                               | 3.8                    | 0         |
| 367 | Simultaneous condensation of five gaseous substances. Journal of Aerosol Science, 1996, 27, S273-S274.                                                                                                                                      | 3.8                    | 0         |
| 368 | Comment on â€~â€~Generalized Kelvin equation and the water content of a cloud''. Physical Review E, 19<br>54, 5868-5869.                                                                                                                    | <sup>96</sup> .<br>2.1 | 0         |
| 369 | Analytical multicomponent condensation rates. Journal of Aerosol Science, 1997, 28, S361-S362.                                                                                                                                              | 3.8                    | 0         |
| 370 | A novel set-up to measure vertical aerosol particle fluxes in the atmospheric surface layer. Journal of<br>Aerosol Science, 1999, 30, S841-S842.                                                                                            | 3.8                    | 0         |
| 371 | On the Determinants of the Skill Premium in Wages. Journal of Institutional and Theoretical Economics, 2008, 164, 195.                                                                                                                      | 0.2                    | 0         |
| 372 | Corrigendum to "Seasonal and annual variation of carbon dioxide surface fluxes in<br>Helsinki, Finland, in 2006–2010" published in Atmos. Chem. Phys., 12, 8475–8489, 2012.<br>Atmospheric Chemistry and Physics, 2012, 12, 11765-11765.    | 4.9                    | 0         |
| 373 | How to Utilise the Knowledge of Causal Responses?. , 2013, , 397-469.                                                                                                                                                                       |                        | 0         |
| 374 | Fluxes of Carbon, Water and Nutrients. , 2013, , 225-328.                                                                                                                                                                                   |                        | 0         |
| 375 | Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Global Change Biology, 2007, .                                                          | 9.5                    | 0         |
| 376 | Modelling the Dynamics of Aerosols in Two-Phase Releases of Hazardous Materials. , 1991, , 613-614.                                                                                                                                         |                        | 0         |
| 377 | Comparison of Models for Aerosol Vaporisation in the Dispersion of Heavy Clouds. , 1994, , 431-438.                                                                                                                                         |                        | 0         |
| 378 | The Pre-Existing Particle Distribution and The Formation of Cloud Droplets. , 1996, , 944-947.                                                                                                                                              |                        | 0         |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Studies on CO2 Exchange of Scots Pine Needles Using Cuvette Field Measurements and A 3-Dimensional Stomatal Model Including Gaseous Phase and Leaf Mesophyll. , 1998, , 3483-3486. |     | Ο         |
| 380 | On Importance of Physical Phenomena in the Temperature Dependence of Photosynthesis -A Sensitivity<br>Analysis. , 1998, , 3495-3498.                                               |     | 0         |
| 381 | Stochastic Lagrangian footprint calculations over a surface with an abrupt change of roughness height. Monte Carlo Methods and Applications, 2003, 9, 167-188.                     | 0.8 | Ο         |