Allen Kaasik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4717652/publications.pdf

Version: 2024-02-01

186265 144013 10,402 61 28 57 citations h-index g-index papers 61 61 61 22897 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Negative feedback system to maintain cell ROS homeostasis: KEAP1-PGAM5 complex senses mitochondrially generated ROS to induce mitophagy. Autophagy, 2022, 18, 2249-2251.	9.1	5
2	Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells, 2022, 11, 38.	4.1	45
3	Balancing ER-Mitochondrial Ca2+ Fluxes in Health and Disease. Trends in Cell Biology, 2021, 31, 598-612.	7.9	69
4	Uniting the divergent Wolfram syndrome–linked proteins WFS1 and CISD2 as modulators of Ca ²⁺ signaling. Science Signaling, 2021, 14, eabc6165.	3.6	15
5	The Expression of RAAS Key Receptors, Agtr2 and Bdkrb1, Is Downregulated at an Early Stage in a Rat Model of Wolfram Syndrome. Genes, 2021, 12, 1717.	2.4	2
6	Early Intervention and Lifelong Treatment with GLP1 Receptor Agonist Liraglutide in a Wolfram Syndrome Rat Model with an Emphasis on Visual Neurodegeneration, Sensorineural Hearing Loss and Diabetic Phenotype. Cells, 2021, 10, 3193.	4.1	17
7	A novel role of KEAP1/PGAM5 complex: ROS sensor for inducing mitophagy. Redox Biology, 2021, 48, 102186.	9.0	36
8	Recent advances in understanding IP3R function with focus on ER-mitochondrial Ca2+ transfers. Current Opinion in Physiology, 2020, 17, 80-88.	1.8	7
9	Neural cell adhesion molecule Negr1 deficiency in mouse results in structural brain endophenotypes and behavioral deviations related to psychiatric disorders. Scientific Reports, 2019, 9, 5457.	3.3	33
10	Mitochondrial transport proteins RHOT1 and RHOT2 serve as docking sites for PRKN-mediated mitophagy. Autophagy, 2019, 15, 930-931.	9.1	14
11	Miro proteins prime mitochondria for Parkin translocation and mitophagy. EMBO Journal, 2019, 38, .	7.8	87
12	Compound heterozygous SPATA5 variants in four families and functional studies of SPATA5 deficiency. European Journal of Human Genetics, 2018, 26, 407-419.	2.8	29
13	The combined impact of IgLON family proteins Lsamp and Neurotrimin on developing neurons and behavioral profiles in mouse. Brain Research Bulletin, 2018, 140, 5-18.	3.0	20
14	Parvalbumin alters mitochondrial dynamics and affects cell morphology. Cellular and Molecular Life Sciences, 2018, 75, 4643-4666.	5.4	12
15	Wfs1- deficient rats develop primary symptoms of Wolfram syndrome: insulin-dependent diabetes, optic nerve atrophy and medullary degeneration. Scientific Reports, 2017, 7, 10220.	3.3	46
16	Mitochondrial biogenesis is required for axonal growth. Development (Cambridge), 2016, 143, 1981-92.	2.5	67
17	Mitochondrial Mobility and Neuronal Recovery. New England Journal of Medicine, 2016, 375, 1295-1296.	27.0	10
18	Indole-like Trk receptor antagonists. European Journal of Medicinal Chemistry, 2016, 121, 541-552.	5 . 5	6

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
20	Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome. PLoS Biology, 2016, 14, e1002511.	5.6	101
21	Mitochondrial biogenesis is required for axonal growth. Journal of Cell Science, 2016, 129, e1.2-e1.2.	2.0	O
22	Principles of mitochondrial fusion and fission cycle in neurons. SpringerPlus, 2015, 4, L34.	1.2	3
23	Gene expression patterns and environmental enrichment-induced effects in the hippocampi of mice suggest importance of Lsamp in plasticity. Frontiers in Neuroscience, 2015, 9, 205.	2.8	15
24	Potassium fluxes across the endoplasmic reticulum and their role in endoplasmic reticulum calcium homeostasis. Cell Calcium, 2015, 58, 79-85.	2.4	28
25	BECN1 is involved in the initiation of mitophagy. Autophagy, 2014, 10, 1105-1119.	9.1	92
26	Principles of the mitochondrial fusion and fission cycle in neurons. Journal of Cell Science, 2013, 126, 2187-97.	2.0	118
27	Energetic and Dynamic: How Mitochondria Meet Neuronal Energy Demands. PLoS Biology, 2013, 11, e1001755.	5.6	37
28	Endoplasmic reticulum potassium–hydrogen exchanger and small conductance calcium-activated potassium channel activities are essential for ER calcium uptake in neurons and cardiomyocytes. Journal of Cell Science, 2012, 125, 625-633.	2.0	49
29	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
30	Mutant A53T $\hat{l}\pm$ -Synuclein Induces Neuronal Death by Increasing Mitochondrial Autophagy. Journal of Biological Chemistry, 2011, 286, 10814-10824.	3.4	226
31	Membrane-bound Phosphodiesterases in Rat Myocardium. Journal of Pharmacy and Pharmacology, 2011, 48, 962-964.	2.4	7
32	Mitochondria as a source of mechanical signals in cardiomyocytes. Cardiovascular Research, 2010, 87, 83-91.	3.8	39
33	Energetic state is a strong regulator of sarcoplasmic reticulum Ca2+ loss in cardiac muscle: different efficiencies of different energy sources. Cardiovascular Research, 2009, 83, 89-96.	3.8	20
34	PGC- $1\hat{l}_{\pm}$ and PGC- $1\hat{l}'$ Regulate Mitochondrial Density in Neurons. Journal of Biological Chemistry, 2009, 284, 21379-21385.	3.4	256
35	The effects of glutamate receptor antagonists on cerebellar granule cell survival and development. NeuroToxicology, 2008, 29, 101-108.	3.0	21
36	Mitochondrial Swelling Impairs the Transport of Organelles in Cerebellar Granule Neurons. Journal of Biological Chemistry, 2007, 282, 32821-32826.	3.4	41

#	Article	IF	Citations
37	Regulation of mitochondrial matrix volume. American Journal of Physiology - Cell Physiology, 2007, 292, C157-C163.	4.6	207
38	Distinct effects of atypical 1,4-dihydropyridines on 1-methyl-4-phenylpyridinium-induced toxicity. Cell Biochemistry and Function, 2007, 25, 15-21.	2.9	18
39	Seizures, Ataxia, and Neuronal Loss in Cystatin B Heterozygous Mice. Epilepsia, 2007, 48, 752-757.	5.1	13
40	Chemokine receptor CCR5 expression in in vitro differentiating human fetal neural stem/progenitor and glioblastoma cells. Neuroscience Letters, 2006, 394, 22-27.	2.1	12
41	Altered Tryptophan Metabolism in the Brain of Cystatin B-Deficient Mice: A Model System for Progressive Myoclonus Epilepsy. Epilepsia, 2006, 47, 1650-1654.	5.1	13
42	Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: Physiological role in neurones. Journal of Cellular Physiology, 2006, 206, 347-353.	4.1	96
43	Dehydroepiandrosterone Inhibits Complex I of the Mitochondrial Respiratory Chain and is Neurotoxic In Vitro and In Vivo at High Concentrations. Toxicological Sciences, 2006, 93, 348-356.	3.1	41
44	Direct mechanical communication between mitochondria and nucleus in cardiac cells. FASEB Journal, 2006, 20, A819.	0.5	0
45	Up-regulation of lysosomal cathepsinâ€∫L and autophagy during neuronal death induced by reduced serum and potassium. European Journal of Neuroscience, 2005, 22, 1023-1031.	2.6	39
46	A novel mechanism of regulation of cardiac contractility by mitochondrial functional state. FASEB Journal, 2004, 18, 1219-1227.	0.5	31
47	Method for in situ detection of the mitochondrial function in neurons. Journal of Neuroscience Methods, 2004, 137, 87-95.	2.5	18
48	Neurodegeneration and production of the new cells in the dentate gyrus of juvenile rat hippocampus after a single administration of ethanol. Brain Research, 2003, 978, 115-123.	2.2	26
49	Dehydroepiandrosterone with other neurosteroids preserve neuronal mitochondria from calcium overload. Journal of Steroid Biochemistry and Molecular Biology, 2003, 87, 97-103.	2.5	32
50	From energy store to energy flux: a study in creatine kinase deficient fast skeletal muscle. FASEB Journal, 2003, 17, 708-710.	0.5	44
51	Decreased expression of phospholamban is not associated with lower beta-adrenergic activation in rat atria. Molecular and Cellular Biochemistry, 2001, 223, 109-115.	3.1	6
52	Energetic Crosstalk Between Organelles. Circulation Research, 2001, 89, 153-159.	4.5	240
53	Neuroprotective action of group I metabotropic glutamate receptor agonists against oxygen–glucose deprivation-induced neuronal death. Brain Research, 2000, 853, 370-373.	2.2	35
54	Nitric oxide inhibits cardiac energy production via inhibition of mitochondrial creatine kinase. FEBS Letters, 1999, 444, 75-77.	2.8	57

ALLEN KAASIK

#	Article	IF	CITATION
55	Do nuclear condensation or fragmentation and DNA fragmentation reflect the mode of neuronal death?. NeuroReport, 1999, 10, 1937-1942.	1.2	8
56	Mechanisms of thyroid hormone control over sensitivity and maximal contractile responsiveness to \hat{I}^2 -adrenergic agonists in atria., 1998,, 419-426.		2
57	Sarcoplasmic reticulum function in determining atrioventricular contractile differences in rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2498-H2507.	3.2	26
58	Thyroid hormones differentially affect sarcoplasmic reticulum function in rat atria and ventricles. Molecular and Cellular Biochemistry, 1997, 176, 119-126.	3.1	13
59	Thyroid hormones differentially affect sarcoplasmic reticulum function in rat atria and ventricles. , $1997, 119-126.$		6
60	Enhanced Negative Inotropic Effect of an Adenosine A1-Receptor Agonist in Rat Left Atria in Hypothyroidism. Journal of Molecular and Cellular Cardiology, 1994, 26, 509-517.	1.9	17
61	Low Particulate Type IV Phosphodiesterase Activity in Hypothyroid Rat Atria. Journal of Molecular and Cellular Cardiology, 1994, 26, 1587-1592.	1.9	6