
Chun-Ting Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4716904/publications.pdf Version: 2024-02-01

CHUN-TING LL

#	Article	IF	CITATIONS
1	Use of organic materials in dye-sensitized solar cells. Materials Today, 2017, 20, 267-283.	14.2	231
2	Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances, 2015, 5, 23810-23825.	3.6	207
3	Platinum-Free Counter Electrode Comprised of Metal-Organic-Framework (MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs). Scientific Reports, 2014, 4, 6983.	3.3	182
4	Organic Dyes Containing Carbazole as Donor and π-Linker: Optical, Electrochemical, and Photovoltaic Properties. ACS Applied Materials & Interfaces, 2014, 6, 2528-2539.	8.0	170
5	A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells. Nano Energy, 2017, 36, 260-267.	16.0	135
6	Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy, 2017, 32, 19-27.	16.0	109
7	Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes. Nano Energy, 2015, 18, 109-117.	16.0	97
8	Fluorene-Based Sensitizers with a Phenothiazine Donor: Effect of Mode of Donor Tethering on the Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 2249-2262.	8.0	84
9	PEDOT-decorated nitrogen-doped graphene as the transparent composite film for the counter electrode of a dye-sensitized solar cell. Nano Energy, 2015, 12, 374-385.	16.0	83
10	Ni 3 Se 4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells. Nano Energy, 2014, 10, 201-211.	16.0	79
11	Nanoclimbing-wall-like CoSe 2 /carbon composite film for the counter electrode of a highly efficient dye-sensitized solar cell: A study on the morphology control. Nano Energy, 2016, 22, 594-606.	16.0	78
12	Copper zinc tin sulfide as a catalytic material for counter electrodes in dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 562-569.	10.3	77
13	A coral-like film of Ni@NiS with core–shell particles for the counter electrode of an efficient dye-sensitized solar cell. Journal of Materials Chemistry A, 2014, 2, 5816-5824.	10.3	70
14	Composite films of carbon black nanoparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2016, 302, 155-163.	7.8	62
15	Highâ€Performance Aqueous/Organic Dyeâ€Sensitized Solar Cells Based on Sensitizers Containing Triethylene Oxide Methyl Ether. ChemSusChem, 2015, 8, 2503-2513.	6.8	61
16	Organic dyes containing fluoren-9-ylidene chromophores for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5766.	10.3	60
17	A composite film of TiS2/PEDOT:PSS as the electrocatalyst for the counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 14888.	10.3	59
18	Tetraphenylethylene tethered phenothiazine-based double-anchored sensitizers for high performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 23225-23233.	10.3	56

CHUN-TING LI

#	Article	IF	CITATIONS
19	lonic liquid-doped poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells: Cationic and anionic effects on the photovoltaic performance. Nano Energy, 2014, 9, 1-14.	16.0	50
20	Efficient titanium nitride/titanium oxide composite photoanodes for dye-sensitized solar cells and water splitting. Journal of Materials Chemistry A, 2015, 3, 4695-4705.	10.3	50
21	Graphite with Different Structures as Catalysts for Counter Electrodes in Dye-sensitized Solar Cells. Electrochimica Acta, 2015, 179, 211-219.	5.2	49
22	Electrocatalytic Zinc Composites as the Efficient Counter Electrodes of Dye-Sensitized Solar Cells: Study on the Electrochemical Performances and Density Functional Theory Calculations. ACS Applied Materials & Interfaces, 2015, 7, 28254-28263.	8.0	44
23	Morphological Influence of Polypyrrole Nanoparticles on the Performance of Dye–Sensitized Solar Cells. Electrochimica Acta, 2015, 155, 263-271.	5.2	42
24	ZnO nanowire/nanoparticles composite films for the photoanodes of quantum dot-sensitized solar cells. Electrochimica Acta, 2013, 88, 35-43.	5.2	40
25	Multifunctional Iodide-Free Polymeric Ionic Liquid for Quasi-Solid-State Dye-Sensitized Solar Cells with a High Open-Circuit Voltage. ACS Applied Materials & Interfaces, 2016, 8, 15267-15278.	8.0	40
26	MoSe2 nanosheet/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2016, 211, 794-803.	5.2	38
27	Cost-effective dopant-free star-shaped oligo-aryl amines for high performance perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 14209-14221.	10.3	37
28	Effective suppression of interfacial charge recombination by a 12-crown-4 substituent on a double-anchored organic sensitizer and rotating disk electrochemical evidence. Journal of Materials Chemistry A, 2017, 5, 7586-7594.	10.3	36
29	Functional tuning of phenothiazine-based dyes by a benzimidazole auxiliary chromophore: an account of optical and photovoltaic studies. RSC Advances, 2014, 4, 53588-53601.	3.6	35
30	lodideâ€Free Ionic Liquid with Dual Redox Couples for Dyeâ€Sensitized Solar Cells with High Openâ€Circuit Voltage. ChemSusChem, 2015, 8, 1244-1253.	6.8	35
31	TCO-free conducting polymers/carbon cloths as the flexible electro-catalytic counter electrodes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 24479-24486.	10.3	34
32	Electrospun membranes of imidazole-grafted PVDF-HFP polymeric ionic liquids for highly efficient quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 14215-14223.	10.3	34
33	Structure–Performance Correlations of Organic Dyes with an Electronâ€Deficient Diphenylquinoxaline Moiety for Dye‣ensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 10052-10064.	3.3	33
34	Earth Abundant Silicon Composites as the Electrocatalytic Counter Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7037-7046.	8.0	31
35	Synthesis of a novel amphiphilic polymeric ionic liquid and its application in quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 20814-20822.	10.3	30
36	A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 384-394.	10.3	29

CHUN-TING LI

#	Article	IF	CITATIONS
37	Hierarchical TiO _{1.1} Se _{0.9} -wrapped carbon cloth as the TCO-free and Pt-free counter electrode for iodide-based and cobalt-based dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 14079-14091.	10.3	28
38	Sensitizers for Aqueousâ€Based Solar Cells. Chemistry - an Asian Journal, 2017, 12, 486-496.	3.3	27
39	Electroactive and Sustainable Cu-MOF/PEDOT Composite Electrocatalysts for Multiple Redox Mediators and for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 8435-8444.	8.0	27
40	Microemulsion-controlled synthesis of CoSe 2 /CoSeO 3 composite crystals for electrocatalysis in dye-sensitized solar cells. Materials Today Energy, 2017, 6, 189-197.	4.7	25
41	Organic Photosensitizers Incorporating Rigid Benzo[1,2- <i>b</i> :6,5- <i>b</i> â€2]dithiophene Segment for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 43739-43746.	8.0	24
42	Boron Nitride/Sulfonated Polythiophene Composite Electrocatalyst as the TCO and Pt-Free Counter Electrode for Dye-Sensitized Solar Cells: 21% at Dim Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 5251-5259.	6.7	24
43	Structural engineering of dipolar organic dyes with an electron-deficient diphenylquinoxaline moiety for efficient dye-sensitized solar cells. Tetrahedron, 2014, 70, 6276-6284.	1.9	23
44	Synthesis and photovoltaic properties of organic dyes containing N-fluoren-2-yl dithieno[3,2-b:2′,3′-d]pyrrole and different donors. Organic Electronics, 2015, 26, 109-116.	2.6	22
45	Nitrogen-doped graphene/molybdenum disulfide composite as the electrocatalytic film for dye-sensitized solar cells. Electrochimica Acta, 2016, 211, 164-172.	5.2	21
46	Orientation-Adjustable Metal–Organic Framework Nanorods for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 28242-28251.	8.0	21
47	Functional tuning of organic dyes containing 2,7-carbazole and other electron-rich segments in the conjugation pathway. RSC Advances, 2015, 5, 17953-17966.	3.6	20
48	Microemulsion-assisted Zinc Oxide Synthesis: Morphology Control and Its Applications in Photoanodes of Dye-Sensitized Solar Cells. Electrochimica Acta, 2016, 210, 483-491.	5.2	20
49	ZnO double layer film with a novel organic sensitizer as an efficient photoelectrode for dye–sensitized solar cells. Journal of Power Sources, 2016, 325, 209-219.	7.8	15
50	Benzimidazole/Pyridoimidazoleâ€Based Organic Sensitizers for Highâ€Performance Dye‣ensitized Solar Cells. Chemistry - an Asian Journal, 2017, 12, 996-1004.	3.3	14
51	Electrocatalytic SiC Nanoparticles/PEDOT:PSS Composite Thin Films as the Counter Electrodes of Dye \hat{e} Sensitized Solar Cells. ChemElectroChem, 2014, 1, 1031-1039.	3.4	13
52	Catalytic and photoelectrochemical performances of Cu–Zn–Sn–Se thin films prepared using selenization of electrodeposited Cu–Zn–Sn metal precursors. Journal of Power Sources, 2015, 286, 47-57.	7.8	11
53	Hierarchical urchin-like CoSe ₂ /CoSeO ₃ electro-catalysts for dye-sensitized solar cells: up to 19% PCE under dim light illumination. Journal of Materials Chemistry A, 2019, 7, 26089-26097.	10.3	11
54	Synthesis and characterization of thieno[3,4- d]imidazole-based organic sensitizers for photoelectrochemical cells. Dyes and Pigments, 2016, 129, 60-70.	3.7	10

CHUN-TING LI

#	Article	IF	CITATIONS
55	Triazine-branched mono- and dianchoring organic dyes: Effect of acceptor arms on optical and photovoltaic properties. Dyes and Pigments, 2019, 165, 182-192.	3.7	7
56	Synthesis and properties of polyurea/malonamide dendritic co-adsorbents for dye-sensitized solar cells. Polymer, 2019, 179, 121673.	3.8	6
57	Organic dyes containing fluorenylidene functionalized phenothiazine donors as sensitizers for dye sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 12392-12404.	2.2	4
58	Solution-growth-synthesized Cu(In,Ga)Se 2 nanoparticles in ethanol bath for the applications of dye-sensitized solar cell and photoelectrochemical reaction. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 136-145.	5.3	4
59	Effect of electron rich π-linkers on the functional properties of dyes featuring dithieno[3,2-b:2′,3′-d]pyrrole donor. Dyes and Pigments, 2019, 160, 614-623.	3.7	4
60	Effect of electron-deficient linkers on the physical and photovoltaic properties of dithienopyrrole-based organic dyes. Journal of Materials Science: Materials in Electronics, 2017, 28, 18404-18417.	2.2	2
61	Metalâ€Free Sensitizers with a Perfluorohexyl Side Chain for Dyeâ€6ensitized Solar Cells: Properties Alien to Alkyl Chains. Asian Journal of Organic Chemistry, 2018, 7, 819-828.	2.7	1
62	Structural Engineering on Pt-Free Electrocatalysts for Dye-Sensitized Solar Cells. , 0, , .		1
63	Dendritic-based co-adsorbents for dye-sensitized solar cells: Effect of the generations and alkyl chain lengths. Synthetic Metals, 2021, 274, 116711.	3.9	1
64	Electrocatalytic SiC Nanoparticles/PEDOT:PSS Composite Thin Films as the Counter Electrodes of Dye-Sensitized Solar Cells. ChemElectroChem, 2014, 1, 961-961.	3.4	0